• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com Raízes Cúbicas

Limites com Raízes Cúbicas

Mensagempor nathilopes » Qua Mar 05, 2014 02:23

Passei o dia inteiro tentando solucionar mas caio sempre em expreções gigantescas que não consigo resolver

lim x->1 \sqrt[3]{3x+5}-2/{x}^{2}-1

preciso solucionar isto até sábado.

Alguém me ajuda ou vou acabar trancando essa matéria.
Obrigada!!!
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Limites com Raízes Cúbicas

Mensagempor Man Utd » Qua Mar 05, 2014 15:11

nathilopes escreveu:Passei o dia inteiro tentando solucionar mas caio sempre em expreções gigantescas que não consigo resolver

lim x->1 \sqrt[3]{3x+5}-2/{x}^{2}-1

preciso solucionar isto até sábado.

Alguém me ajuda ou vou acabar trancando essa matéria.
Obrigada!!!




\lim_{x \to 1} \; \frac{\sqrt[3]{3x+5}-2}{{x}^{2}-1}


\lim_{x \to 1} \; \frac{\sqrt[3]{3x+5}-2}{(x-1)*(x+1)}


agora faça a substituição: u=3x+5  \;\; \Leftrightarrow \;\;\; x= \frac{u-5}{3} \;\;\;\; , \;\; x \to 1 \;\;\; , \;\; u \to 8



\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{\left(\frac{u-5}{3}-1\right)*\left(\frac{u-5}{3}+1\right)}


\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{\left(\frac{u-8}{3} \right)*\left(\frac{u-2}{3} \right)}


\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{\frac{u-8}{3}} \;\; \times \;\; \lim_{u \to 8}\; \frac{1}{\frac{u-2}{3}}


3*\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{u-8} \;\; \times \;\; 3*\lim_{u \to 8}\; \frac{1}{u-2}


3*\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{u-8} \;\; \times \;\; \frac{1}{2}



lembre-se da fatoração : a^{3}-b^{3}=(a-b)*(a^{2}+a*b+b^{2}), então:


3*\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{(\sqrt[3]{u}-2)*(\sqrt[3]{u^{2}}+2\sqrt[3]{u}+4)} \;\; \times \;\; \frac{1}{2}


3*\lim_{u \to 8} \; \frac{1}{\sqrt[3]{u^{2}}+2\sqrt[3]{u}+4} \;\; \times \;\; \frac{1}{2}


3*\left( \frac{1}{\sqrt[3]{8^{2}}+2\sqrt[3]{8}+4\right)} \;\; \times \;\; \frac{1}{2}


\boxed{\boxed{\boxed{\frac{1}{8}}}}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limites com Raízes Cúbicas

Mensagempor nathilopes » Qua Mar 05, 2014 16:09

Muito Obrigada,

Eu já não sabia mais o que fazer, agora consegui entender.
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.