• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com Raízes Cúbicas

Limites com Raízes Cúbicas

Mensagempor nathilopes » Qua Mar 05, 2014 02:23

Passei o dia inteiro tentando solucionar mas caio sempre em expreções gigantescas que não consigo resolver

lim x->1 \sqrt[3]{3x+5}-2/{x}^{2}-1

preciso solucionar isto até sábado.

Alguém me ajuda ou vou acabar trancando essa matéria.
Obrigada!!!
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Limites com Raízes Cúbicas

Mensagempor Man Utd » Qua Mar 05, 2014 15:11

nathilopes escreveu:Passei o dia inteiro tentando solucionar mas caio sempre em expreções gigantescas que não consigo resolver

lim x->1 \sqrt[3]{3x+5}-2/{x}^{2}-1

preciso solucionar isto até sábado.

Alguém me ajuda ou vou acabar trancando essa matéria.
Obrigada!!!




\lim_{x \to 1} \; \frac{\sqrt[3]{3x+5}-2}{{x}^{2}-1}


\lim_{x \to 1} \; \frac{\sqrt[3]{3x+5}-2}{(x-1)*(x+1)}


agora faça a substituição: u=3x+5  \;\; \Leftrightarrow \;\;\; x= \frac{u-5}{3} \;\;\;\; , \;\; x \to 1 \;\;\; , \;\; u \to 8



\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{\left(\frac{u-5}{3}-1\right)*\left(\frac{u-5}{3}+1\right)}


\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{\left(\frac{u-8}{3} \right)*\left(\frac{u-2}{3} \right)}


\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{\frac{u-8}{3}} \;\; \times \;\; \lim_{u \to 8}\; \frac{1}{\frac{u-2}{3}}


3*\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{u-8} \;\; \times \;\; 3*\lim_{u \to 8}\; \frac{1}{u-2}


3*\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{u-8} \;\; \times \;\; \frac{1}{2}



lembre-se da fatoração : a^{3}-b^{3}=(a-b)*(a^{2}+a*b+b^{2}), então:


3*\lim_{u \to 8} \; \frac{\sqrt[3]{u}-2}{(\sqrt[3]{u}-2)*(\sqrt[3]{u^{2}}+2\sqrt[3]{u}+4)} \;\; \times \;\; \frac{1}{2}


3*\lim_{u \to 8} \; \frac{1}{\sqrt[3]{u^{2}}+2\sqrt[3]{u}+4} \;\; \times \;\; \frac{1}{2}


3*\left( \frac{1}{\sqrt[3]{8^{2}}+2\sqrt[3]{8}+4\right)} \;\; \times \;\; \frac{1}{2}


\boxed{\boxed{\boxed{\frac{1}{8}}}}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limites com Raízes Cúbicas

Mensagempor nathilopes » Qua Mar 05, 2014 16:09

Muito Obrigada,

Eu já não sabia mais o que fazer, agora consegui entender.
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: