• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício com Teorema de Bolzano

Exercício com Teorema de Bolzano

Mensagempor fff » Qua Fev 05, 2014 11:54

Bom dia, tenho dúvidas neste exercício que é para resolver com o Teorema de Bolzano:
Sejam f e g duas funções contínuas com domínio [a,b]. Sabe-se que f(a)<g(a) e f(b)>g(b). Prova, por via analítica que os gráficos de f e g se intersetam.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor e8group » Qua Fev 05, 2014 15:26

Dica :

Defina h = f - g . Mostre que h é contínua e que h(a) \cdot h(b) < 0 e com isso conclua que existe c \in [a,b] de modo que g(c) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor fff » Qua Fev 05, 2014 16:57

Eu fiz assim:
h(x)=f(x)-g(x)
h(a)=f(a)-g(a)\rightarrow h(a)<0 porque f(a)<g(a).
h(b)=f(b)-g(b)\rightarrow h(b)>0 porque f(b)>g(b).
Como h é contínua (pois é a diferença de 2 funções contínuas) e h(a)*h(b)<0, o corolário do Teorema de Bolzano permite afirmar que :
Existe x\epsilon]a,b[:h(x)=0. Então o gráfico de f e g intersetam-se.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor e8group » Qui Fev 06, 2014 11:17

Está correto sua solução .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor fff » Qui Fev 06, 2014 17:19

Obrigada pela ajuda :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: