por CJunior » Dom Jan 26, 2014 15:47
(EUA) O número

, escrito na base inteira b, é o quadrado de um inteiro para quais valores de b?
OBS.:Já tentei algumas técnicas de álgebra elementar, mas não obtive êxito!!!
-
CJunior
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Jan 26, 2014 13:18
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por young_jedi » Seg Jan 27, 2014 18:11
para converter o numero

da base b para a base decimal operamos da seguinte maneira



portanto para qualquer base inteira o numero vai ser o quadrado de um numero,
esse numero é a base mais 1
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Russman » Seg Jan 27, 2014 21:55
Interessante.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por CJunior » Ter Jan 28, 2014 12:24
Obrigado young_jedi!!! Sua resposta foi maravilhosa, entretanto você cometou um pequeno erro ao dizer "para qualquer base inteira o numero vai ser o quadrado de um número". De fato isso não é verdade, uma vez que para b=2 o número

não existe, sendo que a base binária só utiliza os dígitos 0 e 1. Desse modo,

é o quadrado de um inteiro se, e somente se, b>2.
Um abraço!!!
-
CJunior
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Jan 26, 2014 13:18
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por young_jedi » Ter Jan 28, 2014 19:46
Bem lembrado!
tem que ser pra base 3 ou maior
Obrigado!
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Produtos Notáveis
por Du21 » Ter Mar 29, 2011 20:31
- 2 Respostas
- 2148 Exibições
- Última mensagem por Du21

Ter Mar 29, 2011 21:02
Álgebra Elementar
-
- Produtos Notáveis
por Pri Ferreira » Qua Mai 23, 2012 00:10
- 0 Respostas
- 1016 Exibições
- Última mensagem por Pri Ferreira

Qua Mai 23, 2012 00:10
Álgebra Elementar
-
- Produtos notáveis e fatoração
por manuoliveira » Dom Mai 02, 2010 14:53
- 3 Respostas
- 3481 Exibições
- Última mensagem por Molina

Dom Mai 02, 2010 19:43
Sistemas de Equações
-
- Produtos Notáveis - dúvida
por laura_biscaro » Ter Fev 26, 2013 11:58
- 5 Respostas
- 2248 Exibições
- Última mensagem por e8group

Ter Fev 26, 2013 21:51
Álgebra Linear
-
- (algebra)Produtos notáveis
por Man Utd » Seg Abr 15, 2013 20:42
- 7 Respostas
- 3206 Exibições
- Última mensagem por DanielFerreira

Ter Abr 16, 2013 16:58
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.