por CJunior » Dom Jan 26, 2014 15:47
(EUA) O número

, escrito na base inteira b, é o quadrado de um inteiro para quais valores de b?
OBS.:Já tentei algumas técnicas de álgebra elementar, mas não obtive êxito!!!
-
CJunior
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Jan 26, 2014 13:18
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por young_jedi » Seg Jan 27, 2014 18:11
para converter o numero

da base b para a base decimal operamos da seguinte maneira



portanto para qualquer base inteira o numero vai ser o quadrado de um numero,
esse numero é a base mais 1
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Russman » Seg Jan 27, 2014 21:55
Interessante.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por CJunior » Ter Jan 28, 2014 12:24
Obrigado young_jedi!!! Sua resposta foi maravilhosa, entretanto você cometou um pequeno erro ao dizer "para qualquer base inteira o numero vai ser o quadrado de um número". De fato isso não é verdade, uma vez que para b=2 o número

não existe, sendo que a base binária só utiliza os dígitos 0 e 1. Desse modo,

é o quadrado de um inteiro se, e somente se, b>2.
Um abraço!!!
-
CJunior
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Jan 26, 2014 13:18
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por young_jedi » Ter Jan 28, 2014 19:46
Bem lembrado!
tem que ser pra base 3 ou maior
Obrigado!
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Produtos Notáveis
por Du21 » Ter Mar 29, 2011 20:31
- 2 Respostas
- 2150 Exibições
- Última mensagem por Du21

Ter Mar 29, 2011 21:02
Álgebra Elementar
-
- Produtos Notáveis
por Pri Ferreira » Qua Mai 23, 2012 00:10
- 0 Respostas
- 1016 Exibições
- Última mensagem por Pri Ferreira

Qua Mai 23, 2012 00:10
Álgebra Elementar
-
- Produtos notáveis e fatoração
por manuoliveira » Dom Mai 02, 2010 14:53
- 3 Respostas
- 3482 Exibições
- Última mensagem por Molina

Dom Mai 02, 2010 19:43
Sistemas de Equações
-
- Produtos Notáveis - dúvida
por laura_biscaro » Ter Fev 26, 2013 11:58
- 5 Respostas
- 2249 Exibições
- Última mensagem por e8group

Ter Fev 26, 2013 21:51
Álgebra Linear
-
- (algebra)Produtos notáveis
por Man Utd » Seg Abr 15, 2013 20:42
- 7 Respostas
- 3207 Exibições
- Última mensagem por DanielFerreira

Ter Abr 16, 2013 16:58
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.