por rodrigo lara » Sex Dez 27, 2013 20:31
A função diferenciável y = f(x) é tal que para todo x?D(f) , o ponto (x, f (x) ) é solução da equação
xy³ + 2xy² + x = 4 . Calcule a equação da reta tangente ao gráfico de f no ponto (1, f (1) ).
-
rodrigo lara
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Dez 27, 2013 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por e8group » Sex Dez 27, 2013 22:10
A função

é dada implicitamente pela equação (dada) e temos (por simplicidade omitiremos a dependência de f por x )

.Derivando-se ambos lados com respeito a

(Atenção as regras : Cadeia ,produto) ,segue

.
Vale ressaltar que esta última expressão corresponde a de baixo
![[f(x)]^3 + 1 + f'(x) (3x[f(x)]^2 +4f(x)) = 0 [f(x)]^3 + 1 + f'(x) (3x[f(x)]^2 +4f(x)) = 0](/latexrender/pictures/3f6c96553bc72f9a2f09f2ccf6f24db1.png)
que substituindo o ponto dado dos dá
![[f(1)]^3 + 1 + f'(1) (3[f(1)]^2 +4f(1)) = 0 [f(1)]^3 + 1 + f'(1) (3[f(1)]^2 +4f(1)) = 0](/latexrender/pictures/0b6fd717b5d70621acef11587d25ad29.png)
(*)
Agora para encontrar

,substituindo o ponto dado na eq.dada ,ficando com
![[f(1)]^3 +2[f(1)]^2 +1 = 4 \iff [f(1)]^3 + 2[f(1)]^2 - 3 = 0 [f(1)]^3 +2[f(1)]^2 +1 = 4 \iff [f(1)]^3 + 2[f(1)]^2 - 3 = 0](/latexrender/pictures/412f08fe859c4181013ec33399f8fd8d.png)
e podemos ver que

no ponto

trata-se uma raiz da eq. polinomial

que és apenas 1 . Aqui determinamos

, substituindo este resultado em

será possível determinar

e por conseguinte a eq. da reta tangente ao gráfico de

no ponto estará bem definida que és

.
Avance .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por rodrigo lara » Ter Jan 07, 2014 21:28
Quando você estava derivando no inicio no item [2x.f(x)]' você não esqueceu de derivar este termo pela regra do produto?
-
rodrigo lara
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Dez 27, 2013 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por e8group » Ter Jan 07, 2014 22:21
Tem razão . Por favor, corrija isto e tente concluir.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Definição de derivada num ponto
por fff » Seg Fev 24, 2014 17:12
- 2 Respostas
- 2674 Exibições
- Última mensagem por e8group

Dom Jul 20, 2014 16:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivada em um ponto
por Fernandobertolaccini » Qui Jul 10, 2014 13:15
- 3 Respostas
- 1578 Exibições
- Última mensagem por young_jedi

Qui Jul 10, 2014 21:54
Cálculo: Limites, Derivadas e Integrais
-
- [Existência de Derivada em um Ponto]
por raimundoocjr » Qui Mai 30, 2013 18:19
- 3 Respostas
- 1558 Exibições
- Última mensagem por Jhonata

Qui Mai 30, 2013 19:21
Cálculo: Limites, Derivadas e Integrais
-
- Derivada num ponto pela definição
por emsbp » Sex Jul 13, 2012 16:52
- 1 Respostas
- 1491 Exibições
- Última mensagem por Russman

Sex Jul 13, 2012 18:09
Cálculo: Limites, Derivadas e Integrais
-
- Derivada no ponto de descontinuidade - capacitor.
por Sobreira » Dom Dez 08, 2013 14:27
- 1 Respostas
- 7248 Exibições
- Última mensagem por young_jedi

Ter Dez 10, 2013 17:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.