• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais - calcular unidades de área

Integrais - calcular unidades de área

Mensagempor soraaxs » Sáb Nov 30, 2013 22:41

Ola?
Estou precisando de ajuda com estas 2 questões..
Esta:

Imagem

---------------------------------------------------------
E esta :

Imagem

Podem me ajudar?

Desde ja agradeço (:
soraaxs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 30, 2013 22:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel Ciencias da Computação
Andamento: cursando

Re: Integrais - calcular unidades de área

Mensagempor soraaxs » Dom Dez 01, 2013 18:26

Ngm? :(
soraaxs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 30, 2013 22:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel Ciencias da Computação
Andamento: cursando

Re: Integrais - calcular unidades de área

Mensagempor Bravim » Seg Dez 02, 2013 01:02

Vou fazer aqui o Desafio 1:
A área do triângulo é dada por:
\int_{0}^{1}\int_{x}^{\frac{x}{4}}dxdy+\int_{1}^{2}\int_{\frac{x}{4}}^{\frac{1}{x}}dxdy
Resolvendo os integrais teremos:
S1=ln2
Como o logaritmo de dois é um número transcendente é meio óbvio que é falso, mas é APROXIMADAMENTE igual ao resultado.
Não sei direito como responder a essa questão então vou deixar aí o resultado, mas para mim é falso.
A área da outra figura eu vou fazer da seguinte forma: Calcularei apenas no primeiro quadrante e multiplicarei por 4 para aproveitar a simetria da figura.
S2=4*(\int_{0}^{1}\int_{0}^{4}dxdy+\int_{1}^{4}\int_{0}^{\frac{4}{x}}dxdy)
S2=16+32ln2
Essa com certeza é falsa. (É possível perceber que é falsa porque só o retângulo [-1,1]x[-4,4] tem uma área maior que 6)
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integrais - calcular unidades de área

Mensagempor Bravim » Seg Dez 02, 2013 01:34

No Desafio 2 é mais fácil você se lembrar do Teorema de Pappus assim você só tem de integrar uma vez.
S=2\pi*\int_{\frac{1}{2}}^{2}4*\sqrt[]{\frac{t^2}{4}+1}dt*\frac{\int_{\frac{1}{2}}^{2}8t*\sqrt[]{t^2+4}dt}{\int_{\frac{1}{2}}^{2}4*\sqrt[]{\frac{t^2}{4}+1}dt}
Deste modo aquelas integrais se cancelam e só sobra
S=2\pi*\int_{\frac{1}{2}}^{2}t*\sqrt[]{t^2+4}dt
S=\frac{2\pi}{3}*(128*\sqrt[]{2}-17*\sqrt[]{17)}
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integrais - calcular unidades de área

Mensagempor soraaxs » Qua Dez 04, 2013 01:32

Vlw :D
soraaxs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Nov 30, 2013 22:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel Ciencias da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}