• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por partes - dúvida

Integral por partes - dúvida

Mensagempor Danilo » Dom Nov 24, 2013 18:20

Resolver \int_{}^{}{x}^{3}{e}^{-{x}^{2}}dx

eu fiz até

\int_{}^{}{x}^{3}{e}^{-{x}^{2}}dx

u = {x}^{3},

 v = \int_{e}^{-{x}^{2}}dx \Rightarrow v = ?

eu não sei como encontrar v. Tentei fazer por substituição pois tem uma função composta. Chamei u = -{x}^{2} mas eu não consegui fazer a substituição. Eu gostaria de resolver apenas dessa maneira, se eu puder... pois não adianta eu resolver de outro jeito se eu travei nessa última integral. Alguma luz? Grato desde já :)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor e8group » Dom Nov 24, 2013 20:10

Tome u= -x^2 ,derivando-se : -du/2 = xdx .

A nova integral fica

-1/2  \int u \cdot e^{u}  du .

Agora tente por partes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor Danilo » Dom Nov 24, 2013 22:04

santhiago escreveu:Tome u= -x^2 ,derivando-se : -du/2 = xdx .

A nova integral fica

-1/2  \int u \cdot e^{u}  du .

Agora tente por partes .


Santhiago, com a sua substuição deu certinho mas eu não consegui visualizar como vc substituiu! -\frac{du}{2} = xdx e não dx (corrreto?). Por isso eu não consigo substituir (se eu não estiver errado) aí eu travo!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor e8group » Seg Nov 25, 2013 11:24

OK . Primeiro pense : Qual a relação entre -x^2 e x^3 ? Para responder esta pergunta , basta notar que x^3 = (-1)(-1)x \cdot x^2 = [(-1)x] (-x^2) .

Além disso, se u = -x^2 entãodu = [-x^2]' dx = (-2)x dx e assim \frac{du}{2} = (-1)x dx . Agora note que ,

x^3 e^{-x^2} dx = [(-1)x] (-x^2) e^{(-x^2)} dx = (-x^2) \cdot e^{(-x^2)} [(-1)xdx] .

A expressão entre () pode ser substituída por u ,já a expressão entre [] pode ser substituída por \frac{du}{2} . Deste modo ,

\int x^3 e^{-x^2} dx  =  \int u \cdot e^{u} \frac{du}{2} = \frac{1}{2} \int u e^u du .

Peço desculpa ,no primeiro post errei contas . De qualquer forma espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.