• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Técnicas de integração

Técnicas de integração

Mensagempor Victor Mello » Seg Nov 18, 2013 23:04

Galera, eu estou tentando integrar \int_{0}^{1/2}\frac{2-8x}{1+4x^2} dx e infelizmente não consegui abrir o caminho para continuar a resolução do problema.

Olha só o que tentei:

\int_{0}^{1/2}\frac{2(1-4x)}{1+4x^2} dx \int_{0}^{1/2}\frac{2(1-4x)}{(2x+1)^2-4x}dx e parei aqui.

Reparem que os termos de uma função racional são bem parecidas e com muita possibilidade de aplicar cancelamento, mas infelizmente eu não estou conseguindo localizar o jeito de continuar na resolução, até tentei pela substituição e nada mudou, continua sobrando uma variável no integrando. Bom, se alguém puder me ajudar, eu agradeço :-D Mais tarde vou postar mais dúvidas.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Técnicas de integração

Mensagempor e8group » Seg Nov 18, 2013 23:27

Sugestão :

\frac{2-8x }{4x^2 + 1} =  \frac{2}{(2x)^2 +  1}   -    \frac{8x}{4x^2 + 1} .

As resposta sai de imediato ,em relação \frac{2}{(2x)^2 +  1} sabendo-se a integral de 1/(m^2 + 1) (qual é ?) digamos que seja G(m) , então pela regra da cadeia [G(2x)]' = 2 G'(2x) .Ora mas isto é exatamente , \frac{2}{(2x)^2 +  1} . É claro que uma substituição simples u = 2x resolve o problema . Já em relação \frac{8x}{4x^2 + 1} é importante notar que 8x é exatamente a derivada de 4x^2 + 1 ,então tome p = x^2 + 1 e tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Técnicas de integração

Mensagempor Victor Mello » Ter Nov 19, 2013 00:16

Consegui agora! Obrigado pela sugestão, e realmente caiu o que você tinha explicado, valeu mesmo! :y:
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.