• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Tripla!

Integral Tripla!

Mensagempor samysoares » Sáb Nov 09, 2013 00:23

Mostre que



Tentei de todas as formas, mudança cilindrica, esférica e nada!
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral Tripla!

Mensagempor Man Utd » Sex Nov 15, 2013 15:09

pergunta: a função do integrando não seria: \sqrt{x^2+y^2+z^2} ?

vamos tentar por coordenadas esféricas:

temos que o cone em coordenadas esféricas é \phi=45 \rightarrow \phi=\frac{\pi}{4} graus.

e o paraboloide é \rho=\frac{cos \phi}{sen^{2} \phi}

a variação de \theta é : 0<=\theta<=2\pi , já que é a volta completa.

a variação de \phi é: \frac{\pi}{4}<= \phi <= \frac{\pi}{2} , se esboçar a figura verá que a varredura do raio começa no cone \phi=\frac{\pi}{4} e termina no paraboloide quando \phi=\frac{\pi}{2}

a variação do raio é 0<=\rho<=\frac{cos \phi}{sen^{2} \phi}

então a nossa integral montada é :

\int_{0}^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\frac{cos \phi}{sen^{2} \phi}} \rho^{4}*sen\phi d\rho d\phi d\theta

tente concluir,se tiver dúvida é só falar. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.