• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor dehcalegari » Seg Set 23, 2013 18:23

\int_{}^{}{cos}^{3}xsenxdx

Encontrei

\frac{{sen}^{2}x}{2}-\frac{{sen}^{4}x}{4} + C

É equivalente a ?

\frac{-1}{4}{cos}^{4}x + C

????
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor young_jedi » Ter Set 24, 2013 22:19

Sim observe que

\frac{sen^2(x)}{2}-\frac{sen^4(x)}{4}+C

=\frac{sen^2(x)}{2}-\frac{(sen^2(x))^2}{4}+C

=\frac{sen^2(x)}{2}-\frac{(1-cos^2(x))^2}{4}+C

=\frac{sen^2(x)}{2}-\frac{(1-2cos^2(x)+cos^4(x))}{4}+C

=\frac{sen^2(x)}{2}-\frac{1}{4}+\frac{cos^2(x)}{2}-\frac{cos^4(x))}{4}+C

=\frac{sen^2(x)+cos^2(x)}{2}-\frac{1}{4}-\frac{cos^4(x))}{4}+C

=\frac{1}{2}-\frac{1}{4}-\frac{cos^4(x))}{4}+C

=-\frac{cos^4(x))}{4}+\frac{1}{4}+C

como C é uma constante podemos incorporar 1/4 a ele

=-\frac{cos^4(x)}{4}+k
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral]

Mensagempor dehcalegari » Seg Out 21, 2013 10:49

Tks. :)
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.