por Paulo Perez » Qui Out 03, 2013 12:22
![\int_{0}^{x}\sqrt[2]{(1 + {t}^{2})}dt \int_{0}^{x}\sqrt[2]{(1 + {t}^{2})}dt](/latexrender/pictures/42dbc60910ef92a9245525e13cb09331.png)
Olá, estou com muita dificuldade para resolver esta integral, pois usando o método de substituição com u = t², dt =

e fica com duas variáveis diferentes , e usando u =
![\sqrt[2]{(1 + {t}^{2})} \sqrt[2]{(1 + {t}^{2})}](/latexrender/pictures/9e9614edd77cf27194752ad1a88e9f93.png)
, dt =
![\frac{t}{\sqrt[2]{(1 + {t}^{2})}} \frac{t}{\sqrt[2]{(1 + {t}^{2})}}](/latexrender/pictures/2e47089e7237ab7757f74516a66c53a6.png)
fica mais complexo ainda, alguém pode me ajudar por favor.
Obrigado
-
Paulo Perez
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 03, 2013 12:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Bravim » Qui Out 03, 2013 16:45
Editado pela última vez por
Bravim em Sáb Out 05, 2013 06:14, em um total de 2 vezes.
-

Bravim
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Qui Out 03, 2013 03:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Paulo Perez » Sex Out 04, 2013 16:32
Muito obrigado pela ajuda!

-
Paulo Perez
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 03, 2013 12:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dificuldade ao resolver uma Integral Racinal
por rubenesantos » Seg Mai 02, 2011 22:38
- 1 Respostas
- 1726 Exibições
- Última mensagem por LuizAquino

Seg Mai 02, 2011 22:58
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda para resolver Integral definida
por rodolphogagno » Qua Dez 01, 2010 15:16
- 4 Respostas
- 3378 Exibições
- Última mensagem por Moura

Seg Dez 13, 2010 21:51
Cálculo: Limites, Derivadas e Integrais
-
- [Funções] dificuldade para resolver
por tiaguito » Seg Out 22, 2012 17:01
- 1 Respostas
- 1722 Exibições
- Última mensagem por Russman

Seg Out 22, 2012 18:35
Funções
-
- [Integrais] Quebrando cabeça para resolver uma integral
por MrJuniorFerr » Dom Dez 16, 2012 16:20
- 3 Respostas
- 2299 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 18:59
Cálculo: Limites, Derivadas e Integrais
-
- Dificuldade para resolver esse sistema.
por 380625 » Sáb Ago 20, 2011 16:08
- 1 Respostas
- 5696 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 00:32
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.