por Vennom » Qua Set 18, 2013 16:15
Senhores, por gentileza me ajudem com isso aqui:
(USP) Simplifique:
![\sqrt[2]{3} \sqrt[2]{3+\sqrt[2]{3}} \sqrt[2]{3+\sqrt[2]{3+\sqrt[2]{3}}} \sqrt[2]{3-\sqrt[2]{3+\sqrt[2]{3}}} \sqrt[2]{3} \sqrt[2]{3+\sqrt[2]{3}} \sqrt[2]{3+\sqrt[2]{3+\sqrt[2]{3}}} \sqrt[2]{3-\sqrt[2]{3+\sqrt[2]{3}}}](/latexrender/pictures/1cec2a67a0cfed29fa364d9b4a198997.png)
Fazendo eu cheguei a isso:
![\sqrt[2]{(3)(3+\sqrt[2]{3})(3+\sqrt[2]{3+\sqrt[2]{3})}(3-\sqrt[2]{3+\sqrt[2]{3})}} \sqrt[2]{(3)(3+\sqrt[2]{3})(3+\sqrt[2]{3+\sqrt[2]{3})}(3-\sqrt[2]{3+\sqrt[2]{3})}}](/latexrender/pictures/23b21317c50f3e70e5ab9df2a471c2a4.png)
=>
=
![\sqrt[2]{(9+3\sqrt[2]{3})(9-3+\sqrt[2]{3})} \sqrt[2]{(9+3\sqrt[2]{3})(9-3+\sqrt[2]{3})}](/latexrender/pictures/d633042033fe640219efd61c667d9c49.png)
=>
=
![\sqrt[2]{(9+3\sqrt[2]{3})(6+\sqrt[2]{3})} \sqrt[2]{(9+3\sqrt[2]{3})(6+\sqrt[2]{3})}](/latexrender/pictures/da88b4ba4d376d828a6756b1bcef00b6.png)
=>
=
![\sqrt[2]{63+27\sqrt[2]{3}} \sqrt[2]{63+27\sqrt[2]{3}}](/latexrender/pictures/b7a017c5ada2ba3e612a65df155868a7.png)
=>
Enquanto o gabarito que me foi dado diz que o resultado seria:
![3\sqrt[2]{5+\sqrt[2]{3}} 3\sqrt[2]{5+\sqrt[2]{3}}](/latexrender/pictures/5f5e7b6389df69bbadb03ae53a86535d.png)
=>
![\sqrt[2]{45+9\sqrt[2]{3}} \sqrt[2]{45+9\sqrt[2]{3}}](/latexrender/pictures/3604ee945cbe7386099ab0698c90c716.png)
Vocês podem me dizer onde raios foi que eu errei? Obrigado.
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Pessoa Estranha » Qua Set 18, 2013 20:36
Olá. Você cometeu um pequeno erro de sinal. Observe o seguinte:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)](/latexrender/pictures/e89eab6fc99912f4a593ad52552b441e.png)
Pense como uma "diferença entre dois números elevados ao quadrado".
Tente fazer.... Eu realmente acredito que o erro esteja neste ponto, mas posso estar errada.
Até mais....

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Vennom » Qua Set 18, 2013 20:44
Pessoa Estranha escreveu:Olá. Você cometeu um pequeno erro de sinal. Observe o seguinte:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)](/latexrender/pictures/e89eab6fc99912f4a593ad52552b441e.png)
A regra ai não diz que é igual ao quadrado do primeiro vezes o quadrado do segundo?
Resultando no seguinte:
![(9-3+\sqrt[2]{3}) (9-3+\sqrt[2]{3})](/latexrender/pictures/399524712f54ca5abeea655608f31cf2.png)
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Pessoa Estranha » Qua Set 18, 2013 20:52
Olha, temos o seguinte:

Lembra?
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Pessoa Estranha » Qua Set 18, 2013 21:00
Você pode até fazer o processo da distributiva. Assim:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}}) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}})](/latexrender/pictures/8fc59f59a91c6ff5e46bdb52a93bb39d.png)
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Vennom » Qua Set 18, 2013 23:19
Pessoa Estranha escreveu:Você pode até fazer o processo da distributiva. Assim:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}}) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}})](/latexrender/pictures/8fc59f59a91c6ff5e46bdb52a93bb39d.png)
Querida, se seguir a propriedade distributiva, o resultado não será exatamente o mesmo?
![6+\sqrt[2]{3} 6+\sqrt[2]{3}](/latexrender/pictures/f80cf9b7665bd683150468a02d903a05.png)
Me perdoe se eu realmente não estou conseguindo ver meu erro, mas insisto na gentileza sua de elucidá-lo para mim.
NOSSO DEUS, ME PERDOE,
MUITO OBRIGADO! VI MEU ERRO AGORA! HAHAHA, você está correta, Pessoa Estranha, foi jogo de sinal. Alí seria
![9-3-\sqrt[2]{3} 9-3-\sqrt[2]{3}](/latexrender/pictures/3eb686d0694193733895a86810393ebb.png)
Pura falta de atenção, realmente, muito obrigado pela sua gentileza em chamar minha atenção p/ o absurdo.
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Como resolver raiz dentro de raiz ?
por natyncb » Qui Abr 12, 2012 00:31
- 10 Respostas
- 13363 Exibições
- Última mensagem por LuizAquino

Sex Ago 24, 2012 07:50
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo: limite com raiz dentro de raiz
por roberto_trebor » Sáb Fev 15, 2014 20:45
- 1 Respostas
- 2117 Exibições
- Última mensagem por Man Utd

Dom Fev 16, 2014 17:58
Cálculo: Limites, Derivadas e Integrais
-
- [Radiciação] Raiz dentro de raiz
por amandasousa_m » Sex Jul 19, 2013 09:37
- 2 Respostas
- 3292 Exibições
- Última mensagem por amandasousa_m

Sex Jul 19, 2013 21:58
Equações
-
- Meter dentro da raiz
por seixas » Seg Ago 22, 2011 13:58
- 2 Respostas
- 2035 Exibições
- Última mensagem por seixas

Seg Ago 22, 2011 17:15
Polinômios
-
- Raiz dentro de raiz
por zeramalho2004 » Seg Set 21, 2009 14:45
- 2 Respostas
- 19791 Exibições
- Última mensagem por Andre+

Ter Mar 23, 2010 21:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.