por Jhennyfer » Dom Ago 18, 2013 11:49
Oi pessoas...
boom a questão é a seguinte:
(UEPB) - Em 1614, o escocês John Napier (1550-1617) criou a ferramenta de calculo mais "afiada" que procedeu a invenção dos computadores, o logaritmo. Se

, então
![Log _{2}\sqrt[5]{m} Log _{2}\sqrt[5]{m}](/latexrender/pictures/d0e6c73acb053e481557591b65f00cce.png)
vale:
Bom tentei começando reduzindo o 32 a base 2...



e agora vem o meu problema (eu acho)...
![2=\sqrt[5]{m} 2=\sqrt[5]{m}](/latexrender/pictures/cc0ede511dc0aee33f85478da16d15ef.png)



Gabarito k...
esse calculo tá certo???
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Ago 18, 2013 12:52
As duas primeiras linhas de seu desenvolvimento estão corretas ,as demais etapas estão erradas.Como encontrou

? .
Note que
![32^k = m \iff 2^{5k} = m \iff (2^k)^5 =m \iff 2^k = \sqrt[5]{m} 32^k = m \iff 2^{5k} = m \iff (2^k)^5 =m \iff 2^k = \sqrt[5]{m}](/latexrender/pictures/4fa60ab8f7b46f84eb1601a5bafef58b.png)
. Aplicando o logaritmo de base 2 em ambos lados da igualdade obtém-se o que se pede no enunciado .De outra forma ,poderia começar "brincando " de multiplicar

por

.veja a equivalência :
![log_{32}(m) = 1 \cdot log_{32}(m) = \frac{5}{5} \cdot log_{32}(m) = 5 (\frac{1}{5} log_{32}(m)) = 5 log_{32}(m^{1/5}) = 5 log_{32}(\sqrt[5]{m}) log_{32}(m) = 1 \cdot log_{32}(m) = \frac{5}{5} \cdot log_{32}(m) = 5 (\frac{1}{5} log_{32}(m)) = 5 log_{32}(m^{1/5}) = 5 log_{32}(\sqrt[5]{m})](/latexrender/pictures/6ed8a3ac9e5456d5e8517d60e1af0873.png)
.
Introduzindo a mudança de base para base 2 na última igualdade , segue :
![5 log_{32}(\sqrt[5]{m}) = 5 \frac{log_{2}(\sqrt[5]{m})}{log_2(32)} = ... 5 log_{32}(\sqrt[5]{m}) = 5 \frac{log_{2}(\sqrt[5]{m})}{log_2(32)} = ...](/latexrender/pictures/23be7244fdffa5eec46b17fea56430f1.png)
tente concluir e comente as dúvidas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhennyfer » Dom Ago 18, 2013 13:32
Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
![2^k=\sqrt[5]{m} 2^k=\sqrt[5]{m}](/latexrender/pictures/fdeee196aeeddfd89f55c923494d3263.png)
não podemos substituir em
![Log_2\sqrt[5]{m} Log_2\sqrt[5]{m}](/latexrender/pictures/1060dbfe119625cc70f1c15e5da195d2.png)
????
assim...




-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Ago 18, 2013 14:29
Jhennyfer escreveu:Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
![2^k=\sqrt[5]{m} 2^k=\sqrt[5]{m}](/latexrender/pictures/fdeee196aeeddfd89f55c923494d3263.png)
não podemos substituir em
![Log_2\sqrt[5]{m} Log_2\sqrt[5]{m}](/latexrender/pictures/1060dbfe119625cc70f1c15e5da195d2.png)
????
assim...




É isso mesmo ,está correto .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhennyfer » Dom Ago 18, 2013 16:00
Obrigado Santhiago...
Mas como eu havia dito, ainda tenho dúvidas nesse outro tipo de resolução que você deixou
santhiago escreveu:Introduzindo a mudança de base para base 2 na última igualdade , segue :
![5.\frac{Log_2\sqrt[5]{m}}{Log_232} 5.\frac{Log_2\sqrt[5]{m}}{Log_232}](/latexrender/pictures/5c3e5673810e1c0209004e54ac99e824.png)
...
tente concluir e comente as dúvidas .
Será q você pode me ajudar respondendo a questão q eu deixei nesse outro link:
viewtopic.php?f=108&t=12758Não é exatamente a mesma coisa, mas acho q pode acabar com muitas dúvidas q ainda tenho.
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Juros] Não acho o tempo, não sei se estou fazendo certo
por AlexandreLuna » Ter Abr 24, 2012 20:46
- 3 Respostas
- 2762 Exibições
- Última mensagem por DanielFerreira

Qui Abr 26, 2012 20:10
Matemática Financeira
-
- ja tentei resolver e nada
por Sana2306 » Seg Set 21, 2009 14:43
- 2 Respostas
- 2034 Exibições
- Última mensagem por DanielFerreira

Sáb Set 26, 2009 12:18
Logaritmos
-
- Seno e cosseno de um arco trigonométrico, eu tentei resolver
por wesley_enrique » Dom Ago 08, 2010 19:38
- 6 Respostas
- 7484 Exibições
- Última mensagem por Pedro123

Seg Ago 09, 2010 18:59
Trigonometria
-
- tentei varias vezes ..mas ñ consegui resolver esses exercici
por ri20do » Seg Dez 15, 2008 00:03
- 1 Respostas
- 2564 Exibições
- Última mensagem por Molina

Ter Dez 16, 2008 16:47
Matemática Financeira
-
- Eu tentei, tentei e não consegui...
por phelipe » Seg Fev 08, 2010 12:40
- 4 Respostas
- 4615 Exibições
- Última mensagem por Elcioschin

Ter Fev 09, 2010 08:26
Desafios Médios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.