• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Tentei resolver mas acho q não deu certo - ajudem.

Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor Jhennyfer » Dom Ago 18, 2013 11:49

Oi pessoas...
boom a questão é a seguinte:

(UEPB) - Em 1614, o escocês John Napier (1550-1617) criou a ferramenta de calculo mais "afiada" que procedeu a invenção dos computadores, o logaritmo. Se Log _{32}m=k, então Log _{2}\sqrt[5]{m} vale:

Bom tentei começando reduzindo o 32 a base 2...

32^k = m
2^5^k = m
5k = m

e agora vem o meu problema (eu acho)...

2=\sqrt[5]{m}
2^5^k=m^\frac{1}{5}
5k=\frac{1}{5}
k=1

Gabarito k...
esse calculo tá certo???
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor e8group » Dom Ago 18, 2013 12:52

As duas primeiras linhas de seu desenvolvimento estão corretas ,as demais etapas estão erradas.Como encontrou 5k = m ? .


Note que 32^k = m  \iff 2^{5k} = m \iff (2^k)^5 =m \iff 2^k = \sqrt[5]{m} . Aplicando o logaritmo de base 2 em ambos lados da igualdade obtém-se o que se pede no enunciado .De outra forma ,poderia começar "brincando " de multiplicar log_{32}(m) por 5/5 =1 .veja a equivalência :


log_{32}(m) = 1 \cdot log_{32}(m) = \frac{5}{5} \cdot log_{32}(m) = 5 (\frac{1}{5} log_{32}(m)) = 5 log_{32}(m^{1/5}) = 5 log_{32}(\sqrt[5]{m}) .

Introduzindo a mudança de base para base 2 na última igualdade , segue :

5 log_{32}(\sqrt[5]{m})  =  5 \frac{log_{2}(\sqrt[5]{m})}{log_2(32)} = ... tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor Jhennyfer » Dom Ago 18, 2013 13:32

Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
2^k=\sqrt[5]{m}

não podemos substituir em Log_2\sqrt[5]{m} ????

assim...
Log_22^k

k.Log_22

k.1

Gabarito: K
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor e8group » Dom Ago 18, 2013 14:29

Jhennyfer escreveu:Oi santhiago, entãoo...
isso acabou entrando em uma dúvida q eu coloquei em outro tópico, fiz uma bagunça aqui e não consegui concluir dessa maneira =/
mas...
ali onde chegamos em que:
2^k=\sqrt[5]{m}

não podemos substituir em Log_2\sqrt[5]{m} ????

assim...
Log_22^k

k.Log_22

k.1

Gabarito: K


É isso mesmo ,está correto .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Tentei resolver mas acho q não deu certo - ajudem.

Mensagempor Jhennyfer » Dom Ago 18, 2013 16:00

Obrigado Santhiago...
Mas como eu havia dito, ainda tenho dúvidas nesse outro tipo de resolução que você deixou
santhiago escreveu:Introduzindo a mudança de base para base 2 na última igualdade , segue :
5.\frac{Log_2\sqrt[5]{m}}{Log_232}...
tente concluir e comente as dúvidas .


Será q você pode me ajudar respondendo a questão q eu deixei nesse outro link:
viewtopic.php?f=108&t=12758

Não é exatamente a mesma coisa, mas acho q pode acabar com muitas dúvidas q ainda tenho.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59