• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Gradiente - Cálculo 3] Dúvida exercício

[Gradiente - Cálculo 3] Dúvida exercício

Mensagempor ferfer » Seg Ago 05, 2013 15:54

Boa tarde galera,
Então, minha dúvida é sobre gradiente do exercício em negrito abaixo:

Considere a função f = x cos(y) + y cos(z) + z cos(x). Calcule ?²f , onde ?² = ? . (?f)

Então, cálculo o gradiente (dF1/dx, dF2/dy, dF3/dz) e depois?
Valeu, obrigado
ferfer
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 26, 2013 13:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: [Gradiente - Cálculo 3] Dúvida exercício

Mensagempor Russman » Seg Ago 05, 2013 16:33

O operador Laplaciano é indicado por \bigtriangledown ^2 e ele calcula a divergência de um campo gradiente! Isto é,

\bigtriangledown ^2 =  \bigtriangledown \cdot  \bigtriangledown = \frac{\mathrm{d^2} }{\mathrm{d} x^2} + \frac{\mathrm{d^2} }{\mathrm{d} y^2} + \frac{\mathrm{d^2} }{\mathrm{d} z^2}

pois definimos o operador nabla como

\bigtriangledown  =\frac{\mathrm{d} }{\mathrm{d} x}\widehat{i}+ \frac{\mathrm{d} }{\mathrm{d} y}\widehat{j}+ \frac{\mathrm{d} }{\mathrm{d} z}\widehat{k} .

Portando, basta você derivar o campo escalar f duas vezes para x, y e z que você terá calculado o Laplaciano.

Exemplo: f=x^3 + y^2 + z

\bigtriangledown ^2f= \left (\frac{\mathrm{d^2} }{\mathrm{d} x^2} + \frac{\mathrm{d^2} }{\mathrm{d} y^2} + \frac{\mathrm{d^2} }{\mathrm{d} z^2}  \right )f =\left ( \frac{\mathrm{d^2} }{\mathrm{d} x^2} + \frac{\mathrm{d^2}}{\mathrm{d} y^2} + \frac{\mathrm{d^2} }{\mathrm{d} z^2}  \right )\left ( x^3 + y^2 + z \right ) = 6x +2
Editado pela última vez por Russman em Seg Ago 05, 2013 16:39, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Gradiente - Cálculo 3] Dúvida exercício

Mensagempor ferfer » Seg Ago 05, 2013 16:39

Desculpa, mas não entendi, estou começando a ver cálculo 3!
Poderia dar um exemplo com resolução? Pode criar uma outra função, a fim que eu não quero a resposta, desejo realizar o exemplo que postei.
Obrigado
ferfer
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 26, 2013 13:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: [Gradiente - Cálculo 3] Dúvida exercício

Mensagempor temujin » Seg Ago 05, 2013 20:54

Foi exatamente isto que o Russman fez.

tome por exemplo a função:

f = x^3+y^2+z

O gradiente de f é o vetor que contém as derivadas parciais de f:

\frac{\partial f}{\partial x} = 3x^2
\frac{\partial f}{\partial y} = 2y
\frac{\partial f}{\partial z} = 1

Logo, o gradiente de f é dado por:

\nabla = (3x^2 ; 2y ; z)

Como ele mostrou, para obter o laplaciano, \nabla^2, basta derivar novamente:

\frac{\partial^2 f}{\partial x^2} = 6x
\frac{\partial^2 f}{\partial y}^2 = 2
\frac{\partial^2 f}{\partial z^2} = 0

Logo, \nabla^2 = 6x+2+0 = 6x+2

Faça o mesmo com a sua função. Basta somar as segundas derivadas parciais.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)