• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Gradiente - Cálculo 3] Dúvida exercício

[Gradiente - Cálculo 3] Dúvida exercício

Mensagempor ferfer » Seg Ago 05, 2013 15:54

Boa tarde galera,
Então, minha dúvida é sobre gradiente do exercício em negrito abaixo:

Considere a função f = x cos(y) + y cos(z) + z cos(x). Calcule ?²f , onde ?² = ? . (?f)

Então, cálculo o gradiente (dF1/dx, dF2/dy, dF3/dz) e depois?
Valeu, obrigado
ferfer
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 26, 2013 13:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: [Gradiente - Cálculo 3] Dúvida exercício

Mensagempor Russman » Seg Ago 05, 2013 16:33

O operador Laplaciano é indicado por \bigtriangledown ^2 e ele calcula a divergência de um campo gradiente! Isto é,

\bigtriangledown ^2 =  \bigtriangledown \cdot  \bigtriangledown = \frac{\mathrm{d^2} }{\mathrm{d} x^2} + \frac{\mathrm{d^2} }{\mathrm{d} y^2} + \frac{\mathrm{d^2} }{\mathrm{d} z^2}

pois definimos o operador nabla como

\bigtriangledown  =\frac{\mathrm{d} }{\mathrm{d} x}\widehat{i}+ \frac{\mathrm{d} }{\mathrm{d} y}\widehat{j}+ \frac{\mathrm{d} }{\mathrm{d} z}\widehat{k} .

Portando, basta você derivar o campo escalar f duas vezes para x, y e z que você terá calculado o Laplaciano.

Exemplo: f=x^3 + y^2 + z

\bigtriangledown ^2f= \left (\frac{\mathrm{d^2} }{\mathrm{d} x^2} + \frac{\mathrm{d^2} }{\mathrm{d} y^2} + \frac{\mathrm{d^2} }{\mathrm{d} z^2}  \right )f =\left ( \frac{\mathrm{d^2} }{\mathrm{d} x^2} + \frac{\mathrm{d^2}}{\mathrm{d} y^2} + \frac{\mathrm{d^2} }{\mathrm{d} z^2}  \right )\left ( x^3 + y^2 + z \right ) = 6x +2
Editado pela última vez por Russman em Seg Ago 05, 2013 16:39, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Gradiente - Cálculo 3] Dúvida exercício

Mensagempor ferfer » Seg Ago 05, 2013 16:39

Desculpa, mas não entendi, estou começando a ver cálculo 3!
Poderia dar um exemplo com resolução? Pode criar uma outra função, a fim que eu não quero a resposta, desejo realizar o exemplo que postei.
Obrigado
ferfer
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 26, 2013 13:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: [Gradiente - Cálculo 3] Dúvida exercício

Mensagempor temujin » Seg Ago 05, 2013 20:54

Foi exatamente isto que o Russman fez.

tome por exemplo a função:

f = x^3+y^2+z

O gradiente de f é o vetor que contém as derivadas parciais de f:

\frac{\partial f}{\partial x} = 3x^2
\frac{\partial f}{\partial y} = 2y
\frac{\partial f}{\partial z} = 1

Logo, o gradiente de f é dado por:

\nabla = (3x^2 ; 2y ; z)

Como ele mostrou, para obter o laplaciano, \nabla^2, basta derivar novamente:

\frac{\partial^2 f}{\partial x^2} = 6x
\frac{\partial^2 f}{\partial y}^2 = 2
\frac{\partial^2 f}{\partial z^2} = 0

Logo, \nabla^2 = 6x+2+0 = 6x+2

Faça o mesmo com a sua função. Basta somar as segundas derivadas parciais.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59