por Leocondeuba » Qui Jul 25, 2013 12:35
Olá a todos. Gostaria de ajuda nesta questão, por gentileza. Obrigado
Quando “Pinóquio” diz uma mentira, o comprimento do seu nariz aumenta 10cm e quando diz
uma verdade, diminui 5cm. Após fazer as três afirmações sobre números naturais x, y e z
quaisquer,
·se y.z é um múltiplo de x, então y ou z é múltiplo de x,
·se x só é divisível por 1 e por x, então x é um número primo,
·se y + z e y são múltiplos de x, então z é múltiplo de x,
o comprimento do nariz de Pinóquio ficou
01) aumentado de 30cm.
02) aumentado de 15cm.
03) com o mesmo comprimento que já tinha.
04) reduzido de 10cm.
05) reduzido de 15cm.
-
Leocondeuba
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mai 11, 2013 19:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MateusL » Qui Jul 25, 2013 17:27
Vou te dar algumas dicas:
1.

é múltiplo de

, mas nem

nem

são múltiplos de

.
2. a definição de número primo.
3. Quando somamos, subtraímos ou multiplicamos dois múltiplos de um número, o resultado também é um múltiplo desse número.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Leocondeuba » Qui Jul 25, 2013 20:28
Obrigado pelas respostas.
-
Leocondeuba
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mai 11, 2013 19:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [UESC 2009 - Equação Modular]
por Leocondeuba » Qui Jul 25, 2013 12:34
- 1 Respostas
- 1029 Exibições
- Última mensagem por young_jedi

Sex Jul 26, 2013 20:38
Álgebra Elementar
-
- [UESC 2009 - Soma de Funções]
por Leocondeuba » Qui Jul 25, 2013 12:36
- 2 Respostas
- 1932 Exibições
- Última mensagem por Leocondeuba

Qui Jul 25, 2013 20:29
Funções
-
- [UESC 2009 Plano de Argand-Gauss]
por Leocondeuba » Qui Jul 25, 2013 12:32
- 1 Respostas
- 1874 Exibições
- Última mensagem por MateusL

Qui Jul 25, 2013 18:29
Números Complexos
-
- [Teoria Números] Algoritmo Não Interceptação Números Primos
por WillamesSilva » Qua Out 26, 2016 12:21
- 8 Respostas
- 16805 Exibições
- Última mensagem por WillamesSilva

Ter Nov 22, 2016 15:33
Aritmética
-
- Números primos
por mony0771 » Qui Abr 23, 2009 10:54
- 2 Respostas
- 3985 Exibições
- Última mensagem por mony0771

Qui Abr 23, 2009 15:28
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.