Bom dia!
Eu não entendi a resolução desta inequação.
Obrigada!





:

é positivo).

. Então:![A=]-1,1[ A=]-1,1[](/latexrender/pictures/dd38bc8922055cbcbbaee33e2e409b8e.png)

:
e
, implicando que
.
:
e
, implicando que
.![B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[ B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[](/latexrender/pictures/451a0ba16c3ad8391cbc2272a7dee08a.png)
![A=]-1,1[ A=]-1,1[](/latexrender/pictures/dd38bc8922055cbcbbaee33e2e409b8e.png)
![B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[ B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[](/latexrender/pictures/451a0ba16c3ad8391cbc2272a7dee08a.png)


Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)