por Celma » Dom Jul 21, 2013 11:42
Bom dia!
Eu não entendi a resolução desta inequação.

- Inequação.png (1.94 KiB) Exibido 3868 vezes
Obrigada!
-
Celma
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Jun 28, 2013 12:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
por MateusL » Dom Jul 21, 2013 16:27
Celma, coloque o enunciado da questão.
Abraço!
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Celma » Dom Jul 21, 2013 18:40
Dado os conjuntos A e B.
As alternativas tem intervalos como resposta. Eu nao consegui anexar porque excedeu o tamanho do arquivo
-
Celma
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Jun 28, 2013 12:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
por MateusL » Dom Jul 21, 2013 19:47
Mas o exercício pede para encontrar o intervalo que representa o que? A intersecção desses dois conjuntos? A união desses dois conjuntos?
Abraço
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Celma » Dom Jul 21, 2013 20:54
Oi Mateus, vou recomeçar.
O enunciado diz apenas: Dados os conjuntos

- Inequação.jpg (7.24 KiB) Exibido 3839 vezes
pode se afirmar que:

- resposta.jpg (6.99 KiB) Exibido 3839 vezes
Não é possível anexar todas as opções porque acaba excedendo o tamanho do arquivo, então coloquei apenas a resposta correta.
Ocorre que não consigo chegar neste intervalo e gostaria de ver desenvolvido para entender onde estou errando.
Obrigada
-
Celma
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Jun 28, 2013 12:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
por MateusL » Dom Jul 21, 2013 22:23
Analisando o conjunto

:


Achando as raízes por bháskara e analisando a concavidade da parábola (neste caso, concavidade voltada para cima, pois o coeficiente de

é positivo).


Ou seja,

. Então:
![A=]-1,1[ A=]-1,1[](/latexrender/pictures/dd38bc8922055cbcbbaee33e2e409b8e.png)
Analisando o conjunto B:

Se

:

Então temos

e

, implicando que

.
Se

:

Então temos

e

, implicando que

.
Então:
![B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[ B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[](/latexrender/pictures/451a0ba16c3ad8391cbc2272a7dee08a.png)
Resumindo:
![A=]-1,1[ A=]-1,1[](/latexrender/pictures/dd38bc8922055cbcbbaee33e2e409b8e.png)
![B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[ B=]-\infty,0[\cup\left]\dfrac{1}{2},+\infty\right[](/latexrender/pictures/451a0ba16c3ad8391cbc2272a7dee08a.png)
Agora é só fazer as operações com esses intervalos.
Abraço!
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.