• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Norma e Ortogonalização

Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 19:12

:-O Não estou conseguindo resolver este exercício:

Considere os vetores: {(1,1,2),(2,-1,4),(2,4,4)}. Encontre um vetor norma 1 ortogonal aos 3 vetores dados e então, determine módulo da soma de suas entradas.

Gabarito:\frac{1}{\sqrt{5}}

Por favor, se alguém puder me ajudar, mesmo que uma sugestão, ficarei grato.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 19:20

Dois vetores são ortogonais quando o produto escalar deles é igual a zero.

Chame o vetor que você quer descobrir de (x,y,z), depois escreva o produto escalar deste vetor por cada um dos outros vetores e iguale cada um desses produtos a zero.
Tu vais ter um sistema de três variáveis e três equações.

Resolva o sistema e depois é só aplicar a restrição da norma ser igual a 1.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 19:39

MateusL escreveu:Dois vetores são ortogonais quando o produto escalar deles é igual a zero.

Chame o vetor que você quer descobrir de (x,y,z), depois escreva o produto escalar deste vetor por cada um dos outros vetores e iguale cada um desses produtos a zero.
Tu vais ter um sistema de três variáveis e três equações.

Resolva o sistema e depois é só aplicar a restrição da norma ser igual a 1.

Abraço!


Obrigado, vou tentar aqui.

Um grande abraço!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 20:14

Certo, encontrei o sistema:

x+y+2z = 0
2x-y+4z = 0
2x+4y+4z = 0

Tentando resolver isso, encontro um sistema com infinitas soluções, e então?

Obrigado.
Att.
Editado pela última vez por Jhonata em Qui Jul 18, 2013 20:21, em um total de 1 vez.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 20:20

Isso aí!
Agora escolha uma variável qualquer e escreva as outras duas em função dela.

Por exemplo, vamos supor que tu escrevas x e y em função de z.

Depois faça \sqrt{x^2+y^2+z^2}=1 (porque no enunciado diz que a norma é igual a 1), substituindo x e y pela escrita deles em função de z.

Resolvendo isso, irás encontrar um valor para z (talvez dois valores) e, consequentemente, encontrarás valores para x e y.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 20:30

Ainda acho que estou fazendo algo errado.
Escalonei a matriz associada ao sistema anterior e obtive que:
y = 0, x=-2z, tomando z = t, então x = -2t.
Então, uma base para esse conjunto ortonormal seria (-2,0,1) (tomando t =1).

Como a norma é 1, as coordenadas desse vetor não batem.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 20:37

Quase isso.

Encontrastes x=-2z,\ y=0 e z pode tomar qualquer valor.

Então as soluções do sistema (os vetores) são da forma (-2z,0,z).

Queres encontrar o módulo da soma das entradas, que será |x+y+z|=|-2z+0+z|=|-z|=|z|

Sabendo que a norma do vetor deve ser igual a 1, podes escrever que:

\sqrt{x^2+y^2+z^2}=1
\sqrt{(-2z)^2+0^2+z^2}=1
\sqrt{4z^2+z^2}=1
5z^2=1\implies z=\pm\dfrac{1}{\sqrt{5}}

Como sabes que o módulo da soma das entradas vai ser igual a |z|, esta soma será igual a \left|\pm\dfrac{1}{\sqrt{5}}\right|=\dfrac{1}{\sqrt{5}}
Editado pela última vez por MateusL em Qui Jul 18, 2013 20:47, em um total de 2 vezes.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 20:41

Ahhh! Nem imaginava que eu deveria, no fim, encontrar a coordenada Z.

Aparentemente estranho, mas faz muito sentido.

Muito obrigado cara! Pela dedicação, em primeiro lugar, pela atenção e pela maravilhosa ajuda!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 20:48

Na verdade, ao resolveres o sistema, encontras a equação paramétrica de uma reta, a qual é ortogonal aos três vetores dados. Depois disso, tens que encontrar para quais valores do parâmetro tu terás um vetor de norma unitária. Encontrarás dois valores para o parâmetro, porque existem, sobre essa reta, dois vetores que satisfazem as condições.

De nada cara!

Abração!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: