• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Norma e Ortogonalização

Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 19:12

:-O Não estou conseguindo resolver este exercício:

Considere os vetores: {(1,1,2),(2,-1,4),(2,4,4)}. Encontre um vetor norma 1 ortogonal aos 3 vetores dados e então, determine módulo da soma de suas entradas.

Gabarito:\frac{1}{\sqrt{5}}

Por favor, se alguém puder me ajudar, mesmo que uma sugestão, ficarei grato.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 19:20

Dois vetores são ortogonais quando o produto escalar deles é igual a zero.

Chame o vetor que você quer descobrir de (x,y,z), depois escreva o produto escalar deste vetor por cada um dos outros vetores e iguale cada um desses produtos a zero.
Tu vais ter um sistema de três variáveis e três equações.

Resolva o sistema e depois é só aplicar a restrição da norma ser igual a 1.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 19:39

MateusL escreveu:Dois vetores são ortogonais quando o produto escalar deles é igual a zero.

Chame o vetor que você quer descobrir de (x,y,z), depois escreva o produto escalar deste vetor por cada um dos outros vetores e iguale cada um desses produtos a zero.
Tu vais ter um sistema de três variáveis e três equações.

Resolva o sistema e depois é só aplicar a restrição da norma ser igual a 1.

Abraço!


Obrigado, vou tentar aqui.

Um grande abraço!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 20:14

Certo, encontrei o sistema:

x+y+2z = 0
2x-y+4z = 0
2x+4y+4z = 0

Tentando resolver isso, encontro um sistema com infinitas soluções, e então?

Obrigado.
Att.
Editado pela última vez por Jhonata em Qui Jul 18, 2013 20:21, em um total de 1 vez.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 20:20

Isso aí!
Agora escolha uma variável qualquer e escreva as outras duas em função dela.

Por exemplo, vamos supor que tu escrevas x e y em função de z.

Depois faça \sqrt{x^2+y^2+z^2}=1 (porque no enunciado diz que a norma é igual a 1), substituindo x e y pela escrita deles em função de z.

Resolvendo isso, irás encontrar um valor para z (talvez dois valores) e, consequentemente, encontrarás valores para x e y.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 20:30

Ainda acho que estou fazendo algo errado.
Escalonei a matriz associada ao sistema anterior e obtive que:
y = 0, x=-2z, tomando z = t, então x = -2t.
Então, uma base para esse conjunto ortonormal seria (-2,0,1) (tomando t =1).

Como a norma é 1, as coordenadas desse vetor não batem.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 20:37

Quase isso.

Encontrastes x=-2z,\ y=0 e z pode tomar qualquer valor.

Então as soluções do sistema (os vetores) são da forma (-2z,0,z).

Queres encontrar o módulo da soma das entradas, que será |x+y+z|=|-2z+0+z|=|-z|=|z|

Sabendo que a norma do vetor deve ser igual a 1, podes escrever que:

\sqrt{x^2+y^2+z^2}=1
\sqrt{(-2z)^2+0^2+z^2}=1
\sqrt{4z^2+z^2}=1
5z^2=1\implies z=\pm\dfrac{1}{\sqrt{5}}

Como sabes que o módulo da soma das entradas vai ser igual a |z|, esta soma será igual a \left|\pm\dfrac{1}{\sqrt{5}}\right|=\dfrac{1}{\sqrt{5}}
Editado pela última vez por MateusL em Qui Jul 18, 2013 20:47, em um total de 2 vezes.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor Jhonata » Qui Jul 18, 2013 20:41

Ahhh! Nem imaginava que eu deveria, no fim, encontrar a coordenada Z.

Aparentemente estranho, mas faz muito sentido.

Muito obrigado cara! Pela dedicação, em primeiro lugar, pela atenção e pela maravilhosa ajuda!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Norma e Ortogonalização

Mensagempor MateusL » Qui Jul 18, 2013 20:48

Na verdade, ao resolveres o sistema, encontras a equação paramétrica de uma reta, a qual é ortogonal aos três vetores dados. Depois disso, tens que encontrar para quais valores do parâmetro tu terás um vetor de norma unitária. Encontrarás dois valores para o parâmetro, porque existem, sobre essa reta, dois vetores que satisfazem as condições.

De nada cara!

Abração!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?