por Jhonata » Qui Jul 18, 2013 19:12

Não estou conseguindo resolver este exercício:
Considere os vetores: {(1,1,2),(2,-1,4),(2,4,4)}. Encontre um vetor norma 1 ortogonal aos 3 vetores dados e então, determine módulo da soma de suas entradas.
Gabarito:

Por favor, se alguém puder me ajudar, mesmo que uma sugestão, ficarei grato.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por MateusL » Qui Jul 18, 2013 19:20
Dois vetores são ortogonais quando o produto escalar deles é igual a zero.
Chame o vetor que você quer descobrir de (x,y,z), depois escreva o produto escalar deste vetor por cada um dos outros vetores e iguale cada um desses produtos a zero.
Tu vais ter um sistema de três variáveis e três equações.
Resolva o sistema e depois é só aplicar a restrição da norma ser igual a 1.
Abraço!
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhonata » Qui Jul 18, 2013 19:39
MateusL escreveu:Dois vetores são ortogonais quando o produto escalar deles é igual a zero.
Chame o vetor que você quer descobrir de (x,y,z), depois escreva o produto escalar deste vetor por cada um dos outros vetores e iguale cada um desses produtos a zero.
Tu vais ter um sistema de três variáveis e três equações.
Resolva o sistema e depois é só aplicar a restrição da norma ser igual a 1.
Abraço!
Obrigado, vou tentar aqui.
Um grande abraço!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Jhonata » Qui Jul 18, 2013 20:14
Certo, encontrei o sistema:



Tentando resolver isso, encontro um sistema com infinitas soluções, e então?
Obrigado.
Att.
Editado pela última vez por
Jhonata em Qui Jul 18, 2013 20:21, em um total de 1 vez.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por MateusL » Qui Jul 18, 2013 20:20
Isso aí!
Agora escolha uma variável qualquer e escreva as outras duas em função dela.
Por exemplo, vamos supor que tu escrevas x e y em função de z.
Depois faça

(porque no enunciado diz que a norma é igual a 1), substituindo x e y pela escrita deles em função de

.
Resolvendo isso, irás encontrar um valor para

(talvez dois valores) e, consequentemente, encontrarás valores para

e

.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhonata » Qui Jul 18, 2013 20:30
Ainda acho que estou fazendo algo errado.
Escalonei a matriz associada ao sistema anterior e obtive que:
y = 0, x=-2z, tomando z = t, então x = -2t.
Então, uma base para esse conjunto ortonormal seria (-2,0,1) (tomando t =1).
Como a norma é 1, as coordenadas desse vetor não batem.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por MateusL » Qui Jul 18, 2013 20:37
Quase isso.
Encontrastes

e

pode tomar qualquer valor.
Então as soluções do sistema (os vetores) são da forma

.
Queres encontrar o módulo da soma das entradas, que será

Sabendo que a norma do vetor deve ser igual a

, podes escrever que:




Como sabes que o módulo da soma das entradas vai ser igual a

, esta soma será igual a

Editado pela última vez por
MateusL em Qui Jul 18, 2013 20:47, em um total de 2 vezes.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhonata » Qui Jul 18, 2013 20:41
Ahhh! Nem imaginava que eu deveria, no fim, encontrar a coordenada Z.
Aparentemente estranho, mas faz muito sentido.
Muito obrigado cara! Pela dedicação, em primeiro lugar, pela atenção e pela maravilhosa ajuda!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por MateusL » Qui Jul 18, 2013 20:48
Na verdade, ao resolveres o sistema, encontras a equação paramétrica de uma reta, a qual é ortogonal aos três vetores dados. Depois disso, tens que encontrar para quais valores do parâmetro tu terás um vetor de norma unitária. Encontrarás dois valores para o parâmetro, porque existem, sobre essa reta, dois vetores que satisfazem as condições.
De nada cara!
Abração!
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.