• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão envolvendo Derivadas e área! Prova no sábado!!

Questão envolvendo Derivadas e área! Prova no sábado!!

Mensagempor arthurvct » Qui Jun 13, 2013 15:21

Boa tarde/noite/dia galera, por favor me ajudem com essa questão:
Determine a área do triângulo formado pelo eixo-x e pelas retas tangentes ao círculo x^2+y^2=2 nos pontos de interseção do círculo com a parábola de equação y=x^2.
arthurvct
 

Re: Questão envolvendo Derivadas e área! Prova no sábado!!

Mensagempor e8group » Sex Jun 14, 2013 00:49

Dica : Faça um esboço da circunferência e da parábola.Observe que tais pontos de interseção possui ordenada positiva ,assim a função que vamos derivar é f(x) = \sqrt{2 -x^2}  , |x| \leq \sqrt{2} .Podemos derivar implicitamente também x^2 + y^2 = 2 com respeito a x, mas lembre-se que y > 0 .Agora para determinar a interseção , basta substituir y por x^2 na equação da circunferência,com isso você determina tais pontos. Supondo que (a,f(a)) é um dos pontos ,temos que : y - f(a) = f'(a)(x-a) \implies r: y =  f'(a) x  -af'(a) +f(a) .Observando os dois pontos de interseção diferem apenas pela abscissa ,elas são simétricas.Então ,as duas retas diferem apenas pelo coeficiente angular que são iguais em módulo (Verifique !) . Assim , as áreas dos dois retângulos são iguais , e portanto A = 2 \cdot \frac{d(O,O_x\cap r) \cdot d(O,O_y\cap r) }{2} é a área que estamos procurando .Agora tente concluir
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.