por juxcarvalho » Qui Mai 30, 2013 12:05
Simplificando a expressão
![\sqrt[]3+{{\sqrt[]{2}} . \sqrt[]3-{{\sqrt[]{2}} /\sqrt[]{7} \sqrt[]3+{{\sqrt[]{2}} . \sqrt[]3-{{\sqrt[]{2}} /\sqrt[]{7}](/latexrender/pictures/214edf8d1a664fc8b036d0b3a74f7936.png)
*tudo sobre raiz se 7
* raiz de 2 esta dentro da raiz de 3, não consigo fazer com essa soma e subtração
Obs: foi mal, comecei a usar o editor agora

-
juxcarvalho
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mai 30, 2013 11:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por ednaldo1982 » Qui Mai 30, 2013 12:50
[quote="juxcarvalho"]Simplificando a expressão
![\sqrt[]3+{{\sqrt[]{2}} . \sqrt[]3-{{\sqrt[]{2}} /\sqrt[]{7} \sqrt[]3+{{\sqrt[]{2}} . \sqrt[]3-{{\sqrt[]{2}} /\sqrt[]{7}](/latexrender/pictures/214edf8d1a664fc8b036d0b3a74f7936.png)
*tudo sobre raiz se 7
* raiz de 2 esta dentro da raiz de 3, não consigo fazer com essa soma e subtração
![\frac{\left( \sqrt[]{3 + \sqrt[]{2}}\right) . \left( \sqrt[]{3 - \sqrt[]{2}}\right)}{\sqrt[]{7}} \frac{\left( \sqrt[]{3 + \sqrt[]{2}}\right) . \left( \sqrt[]{3 - \sqrt[]{2}}\right)}{\sqrt[]{7}}](/latexrender/pictures/59c0b17865466d1a173ac0ee5c26b7b0.png)
-

ednaldo1982
- Usuário Dedicado

-
- Mensagens: 44
- Registrado em: Seg Mar 26, 2012 11:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7896 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
-
- [Radiciação] Raízes dentro de raízes
por mottasky » Ter Set 13, 2011 22:00
- 2 Respostas
- 2380 Exibições
- Última mensagem por mottasky

Qui Set 15, 2011 15:52
Álgebra Elementar
-
- raízes.
por carolina camargo » Qua Jun 17, 2009 16:39
- 5 Respostas
- 2789 Exibições
- Última mensagem por Molina

Qua Jun 17, 2009 19:01
Funções
-
- Raízes
por aline2010 » Dom Ago 08, 2010 07:46
- 1 Respostas
- 1243 Exibições
- Última mensagem por MarceloFantini

Seg Ago 09, 2010 06:08
Sistemas de Equações
-
- raizes
por cristina » Qui Set 09, 2010 09:57
- 3 Respostas
- 1736 Exibições
- Última mensagem por MarceloFantini

Qui Set 09, 2010 17:52
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.