• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Determinaçao do Momento-Inequaçoes]

[Determinaçao do Momento-Inequaçoes]

Mensagempor R0nny » Sex Mai 03, 2013 15:12

Problema 1:Durante uma experiencia foi registada a variaçao da temperatura de um líquido, em graus celsius, que evoluiu, nas primeiras 8 horas, segundo a funçao:h(t)= x²/4+3x+7 Determine em que momentos da experincia o líquido obteve uma temperatura superior a 10C. Fonte: Pergunta questionada pelo Professor na sala de aula. Se diz em que momentos, está a referir o tempo ou seja o instante, logo se diz que a temperatura superior a 10 graus celcius entao, eu peguei a equaçao e fiz: x²/4+3x+7>10, depois haverá o calculo do delta, só que nao dará uma raiz perfeita. Onde estou falhando?? :oops:
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor young_jedi » Sáb Mai 04, 2013 00:35

nos meus cálculos delta resultou em 12
realmente não tem raiz exata, você pode deixar a resposta em função da raiz mesmo, ou você pode calcular esta raiz com uma calculadora e dar o resultado aproximado
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 08:02

Mas me diga uma coisa, se voce der o avanço com essa sua raiz(12), no final de toda resoluçao terá que: t=1.1s?
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor young_jedi » Sáb Mai 04, 2013 08:49

nas minhas contas deu 0.84
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 12:34

A soluçao deve ser 1,1, so que parece que nós os dois nao estamos a chegar la, devemos contactar ao superior ou um moderador para que nos ajude!
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor e8group » Sáb Mai 04, 2013 13:54

Realmente o discriminante é 12 .O colaborador young_jedi estar correto .Mas , apesar de a temperatura ser superior a 10°C quando t =1.1 ,está solução não é única ,afinal de contas trata-se de uma inequação .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 14:43

Sim Santiago, depois de várias horas de resoluçao deste exercicio eu tambem apanhei o descriminante(delta)=12, éntao aos aplicarmos a outra formula teremos uma raize positiva e negativa, isto é, 1 e acho que é -13.2 se a memória nao me engana, digo várias horas de resoluçao pois estava tentando achar o tal t=1.1, e nao consegui; Como ele nao pode ter um tempo neste caso negativo, obtamos para o t=1. acho que t=1.1s=1 :-P
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 14:45

Eu penso que tratando-se de uma inequaçao, se tem o ">", isto quer dizer que admite valores positivos, isto é, acima de 0, como obtemos a nossa raiz(positiva)=1, entao x>1.... 1.1,1.2,1.3...etc... :idea:
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor e8group » Sáb Mai 04, 2013 15:26

A raiz positiva da equação \frac{t^2}{4} + 3t +7 - 10 = \frac{t^2}{4} + 3t -3 = 0 não é 1 ,o número 1 é uma aproximação por excesso desta raiz .Pela fórmula resolvente , temos

t = \frac{-b \pm \sqrt{\Delta}}{2a} ;  \Delta = b^2 - 4ac .

Então : t = \frac{-3 \pm \sqrt{12}}{2 \cdot \dfrac{1}{4}} = 2 (-3\pm 2\sqrt{3}) .

Como t > 0 ,resulta que t = 2(2\sqrt{3} -3) é a raiz da equação h(t) -10 = 0 . Como h(t) -10 descreve uma parábola cuja concavidade é voltada para cima ,tem-se necessariamente h(t) -10 > 0 para quaisquer t > 2(-3+2\sqrt{3}) .Desta forma ,sempre que t > 2(-3+2\sqrt{3}) a temperatura será superior a 10°C .Só acrescentando ,tomando-se 1.73 como aproximação para \sqrt{3} ,vemos que 2(2\sqrt{3} -3) \approx 2(2 \cdot 1.73 - 3) = 2(3.46 - 3 )  = 2 \cdot 0.46  = 0.92 (nada mau ! De acordo com o wolfram alpha : http://www.wolframalpha.com/input/?i=2* ... 283%29%29+ )
Editado pela última vez por e8group em Sáb Mai 04, 2013 15:52, em um total de 1 vez.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 15:49

Eu havia dito 1 por causa de ao resolver obtive 0.9 entao aproximei por 1 :-P
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Determinaçao do Momento-Inequaçoes]

Mensagempor e8group » Sáb Mai 04, 2013 15:53

OK .Observei um erro no texto ,já está editado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?