• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolvo essa integral indefinida??

Como resolvo essa integral indefinida??

Mensagempor Justiceira » Sáb Out 31, 2009 19:52

\int_\left(\frac{x^3+2x^4}{\sqrt[]{x}} \right)dx

Como um colega do proprio forum ensinou eu fiz isso

\int_{}^{}\frac{x^3}{\sqrt[]{x}} dx + \int_{}^{}\frac{2x^4}{\sqrt[]{x}} dx

Mas não sei se fiz certo o restante pois o result saiu muito estranho
Dizem q da pra derivar depois o resultado da integral e chegar a um resultado que seria essa integral acima.

Obrigada! ;)
Avatar do usuário
Justiceira
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 27, 2009 12:26
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Como resolvo essa integral indefinida??

Mensagempor Molina » Sáb Out 31, 2009 20:19

Outra dica:

\frac{x^3}{\sqrt{x}}=\frac{x^3}{x^{\frac{1}{2}}}=x^3*x^{\frac{-1}{2}}=x^{\frac{5}{2}}

Agorafica fácil, né? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Como resolvo essa integral indefinida??

Mensagempor Ninha » Seg Nov 23, 2009 20:23

Em poucos meses, acho que 90% dos meus posts estarão nas pérolas..'-'
Eu não saquei..'-'
E olha que meu amigo me ensinou a fazer isso hoje
T.T

Cara..tudo bem, a primeira parte tranquilasso.. mas, e o que voce fez com a outra? Tpw ...
\int_/\frac{{x}^{3}}{\sqrt[]{x}} dx + \int_/\frac{{2x}^{4}}{\sqrt[]{x}}dx (Desconsiderem aquelas barras ali...=o ]

. . . . . . . . ||____________||
A parte que eu selecionei acima, o que houve com ela? Oo
Imagem
Avatar do usuário
Ninha
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Nov 23, 2009 19:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Biomedicina
Andamento: cursando

Re: Como resolvo essa integral indefinida??

Mensagempor Molina » Seg Nov 23, 2009 21:06

Ninha escreveu:Em poucos meses, acho que 90% dos meus posts estarão nas pérolas..'-'
Eu não saquei..'-'
E olha que meu amigo me ensinou a fazer isso hoje
T.T

Cara..tudo bem, a primeira parte tranquilasso.. mas, e o que voce fez com a outra? Tpw ...
\int_/\frac{{x}^{3}}{\sqrt[]{x}} dx + \int_/\frac{{2x}^{4}}{\sqrt[]{x}}dx (Desconsiderem aquelas barras ali...=o ]

. . . . . . . . ||____________||
A parte que eu selecionei acima, o que houve com ela? Oo

Boa noite, Ninha.

Com a segunda parte você vai fazer a mesma coisa:

\int \frac{{2x}^{4}}{\sqrt[]{x}}dx=2*\int \frac{{x}^{4}}{x^{\frac{1}{2}}}dx=2*\int x^{\frac{7}{2}}dx=\frac{4}{9}x^{\frac{9}{2}}+C

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59