• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão do ITA

Questão do ITA

Mensagempor sergioh » Dom Abr 28, 2013 22:55

Se S é a área total de um cilindro reto de altura h, e se m é a razão direta entre a área lateral e a soma das áreas das bases, então o valor de h é dado por:

a) h = m.\sqrt\frac{S}{2\pi(m+1)} (Resposta)

b) h = m.\sqrt\frac{S}{4\pi(m+2)}

c) h = m.\sqrt\frac{S}{2\pi(m+2)}

d) h = m.\sqrt\frac{S}{4\pi(m+1)}
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão do ITA

Mensagempor e8group » Seg Abr 29, 2013 12:32

O que vc tentou ?


A área da base A_b corresponde a área da circunferência de raio r > 0 e a área lateral A_l do cilindro equivale a área do retângulo de base 2\pi r e altura h .Com estas informações ,obtemos

i) A_b = \pi r^2  \\ 

ii) A_l = 2\pi r \cdot h  \\ 

iii) S = 2A_b + A_l =   2\pi r^2  + 2\pi rh .

No item iii) ,dividindo-se ambos membros por 2A_b = 2\pi r^2 ,segue

r\frac{S}{2\pi r^2} -r  = h .

Substiuindo-se h no item ii) ,

A_l = 2\pi r^2 \cdot \left( -1+\frac{S}{2\pi r^2} \right) \iff

m = -1+\frac{S}{2\pi r^2}   \iff   2\pi r^2[m + 1] = S  \iff  r  = \sqrt{\frac{S}{2\pi(m+1)}}

Lembrando que r\frac{S}{2\pi r^2} -r   =  r\left(\frac{S}{2\pi r^2} - 1 \right ) = h

Segue o resultado do gabarito ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão do ITA

Mensagempor sergioh » Seg Mai 06, 2013 22:03

Meu amigo... não consegui acompanhar seu raciocínio...estudei-o detalhadamente mas tem algo que não se encaixa...poderia fazê-lo passo a passo (prum leigo como eu)
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão do ITA

Mensagempor e8group » Seg Mai 06, 2013 22:13

Qual parte exatamente você não compreendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.