• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PG alternante e infinita]

[PG alternante e infinita]

Mensagempor JKS » Qui Abr 11, 2013 01:24

preciso de ajuda,desde já agradeço!

Ache o valor do 25° termo da pg alternante e infinita, sabendo que q = -\frac{1}{8} e S= -\frac{64}{9}.

GABARITO : -{2}^{-69}
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [PG alternante e infinita]

Mensagempor DanielFerreira » Ter Abr 16, 2013 12:15

Jks,
bom dia!
Procure expor suas tentativas ao resolver as questões. Fica mais fácil identificar onde 'reside' a dúvida; ou, apenas a resolução é suficiente?

Segue,

Determinemos o primeiro termo da sequência da seguinte forma:

\\ S_n = \frac{a_1}{1 - q} \\\\\\ - \frac{64}{9} = \frac{a_1}{1 + \frac{1}{8}} \\\\\\ \cancel{9} \cdot a_1 = - 64 \cdot \frac{\cancel{9}}{8} \\\\ \boxed{a_1 = - 8}


Agora podemos achar o 25° termo.

\\ a_n = a_1 \cdot q^{n - 1} \\\\ a_{25} = - 8 \cdot \left ( - \frac{1}{8} \right )^{25 - 1} \\\\\\ a_{25} = - 1 \cdot 8 \cdot \left ( - \frac{1}{8} \right )^{24} \\\\ a_{25} = - 1 \cdot 2^3 \cdot (2^{- 3})^{24} \\\\ a_{25} = - 1 \cdot 2^3 \cdot 2^{- 72} \\\\ a_{25} = - 1 \cdot 2^{3 - 72} \\\\ a_{25} = - 1 \cdot 2^{- 69} \\\\ \boxed{\boxed{\boxed{a_{25} = - 2^{-69}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [PG alternante e infinita]

Mensagempor JKS » Dom Abr 21, 2013 18:16

Muito Obrigada , vou tentar expor minhas tentativas, é porque na resolução das questões feitas por vocês, na maioria das vezes,eu consigo identificar onde foi meu erro,mas quando eu não conseguir eu publico aqui ,mais uma vez te agradeço por me ajudar !!
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [PG alternante e infinita]

Mensagempor DanielFerreira » Sex Abr 26, 2013 21:30

Então tá! :y:
Até a próxima!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?