• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PG alternante e infinita]

[PG alternante e infinita]

Mensagempor JKS » Qui Abr 11, 2013 01:24

preciso de ajuda,desde já agradeço!

Ache o valor do 25° termo da pg alternante e infinita, sabendo que q = -\frac{1}{8} e S= -\frac{64}{9}.

GABARITO : -{2}^{-69}
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [PG alternante e infinita]

Mensagempor DanielFerreira » Ter Abr 16, 2013 12:15

Jks,
bom dia!
Procure expor suas tentativas ao resolver as questões. Fica mais fácil identificar onde 'reside' a dúvida; ou, apenas a resolução é suficiente?

Segue,

Determinemos o primeiro termo da sequência da seguinte forma:

\\ S_n = \frac{a_1}{1 - q} \\\\\\ - \frac{64}{9} = \frac{a_1}{1 + \frac{1}{8}} \\\\\\ \cancel{9} \cdot a_1 = - 64 \cdot \frac{\cancel{9}}{8} \\\\ \boxed{a_1 = - 8}


Agora podemos achar o 25° termo.

\\ a_n = a_1 \cdot q^{n - 1} \\\\ a_{25} = - 8 \cdot \left ( - \frac{1}{8} \right )^{25 - 1} \\\\\\ a_{25} = - 1 \cdot 8 \cdot \left ( - \frac{1}{8} \right )^{24} \\\\ a_{25} = - 1 \cdot 2^3 \cdot (2^{- 3})^{24} \\\\ a_{25} = - 1 \cdot 2^3 \cdot 2^{- 72} \\\\ a_{25} = - 1 \cdot 2^{3 - 72} \\\\ a_{25} = - 1 \cdot 2^{- 69} \\\\ \boxed{\boxed{\boxed{a_{25} = - 2^{-69}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [PG alternante e infinita]

Mensagempor JKS » Dom Abr 21, 2013 18:16

Muito Obrigada , vou tentar expor minhas tentativas, é porque na resolução das questões feitas por vocês, na maioria das vezes,eu consigo identificar onde foi meu erro,mas quando eu não conseguir eu publico aqui ,mais uma vez te agradeço por me ajudar !!
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [PG alternante e infinita]

Mensagempor DanielFerreira » Sex Abr 26, 2013 21:30

Então tá! :y:
Até a próxima!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.