• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prisão perpétua

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Prisão perpétua

Mensagempor admin » Sáb Jul 21, 2007 01:22

Um réu foi condenado por um juri à prisão perpétua. Mas posteriormente, sua pena foi reduzida à metade. Como sua pena pode ser cumprida?
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Prisão perpétua

Mensagempor jose reis pimenta » Ter Nov 13, 2007 20:00

Como não se pode prever a quantidade de tempo viverá o réu e se não pode prejudicá-lo, o certo e liberá-lo imediatamente.
jose reis pimenta
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Nov 11, 2007 19:55
Área/Curso: Estudante
Andamento: cursando

Re: Prisão perpétua

Mensagempor admin » Ter Nov 13, 2007 21:36

jose reis pimenta escreveu:Como não se pode prever a quantidade de tempo viverá o réu e se não pode prejudicá-lo, o certo e liberá-lo imediatamente.


Considerando a acepção do termo perpétuo: que dura para sempre, que é eterno.
Uma prisão perpétua, por um tempo perpétuo, quantitativa e matematicamente falando, é um tempo infinito.

As operações com o infinito representam um assunto delicado.
Mas, neste caso, sem perda de generalidade, podemos fazer uma bijeção entre uma medida de tempo escolhida e o conjunto dos números naturais, por exemplo. A quantidade de números é infinita, assim como o tempo perpétuo na medida adotada.

Feita esta consideração, o tempo T de prisão deverá ser:
T = \frac{\infty}{2} = \infty

Ou seja, desde que não se envolva outro \infty nestas divisões do tempo, a prisão continuará sendo perpétua.

Corrijam-me se eu estiver errado.
Abraços!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Prisão perpétua

Mensagempor wiljrebec » Qua Jan 02, 2008 23:34

esse problema é tipo uma pegadinha, não dá para calcular o tempo que o réu vai ficar preso . se foi diminuida pela metade é mais conveniente deixá-lo um dia preso e um dia solto até sua morte.
wiljrebec
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jan 02, 2008 17:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2° grau completo

Re: Prisão perpétua

Mensagempor Neperiano » Qui Out 30, 2008 16:12

Ola

Voce esta certo Fábio pois infinito dividido por 2 continua sendo infinito.

Ah gostei da sua opinião wiljrebec sobre cumprir a pena um dia sim e outro não, mas acho que seria mais fácil, passar 12 horas na cadeia e 12 em casa, ou seja, denoite na prisão e durante o dia em casa.

Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Prisão perpétua

Mensagempor felipe correa » Qui Dez 11, 2008 21:30

eu lembro que eu vi esse problema no livro "o homem que calculava", a solução dele era deixar o prioneiro preso uma determinada quantidade de tempo e depois deixá-lo livre por iqual periodo, depois recomeça o ciclo. assim consequiria-se uma aproximação de metade do perpétuo.
felipe correa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Dez 10, 2008 19:19
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática computacional
Andamento: cursando

Re: Prisão perpétua

Mensagempor Sandra Piedade » Sáb Dez 13, 2008 13:41

É interessante este problema! Concordo com o Fábio. Seguindo as outras linhas de raciocínio, o prisioneiro deve estar tanto tempo preso, como em liberdade (pela definição de metade), mas como não sabemos se ele morre no instante já a seguir ou daqui a 80 anos, como decidir quando estará preso? Poderíamos pensar numa correspondência entre tempo e os números reais positivos e pensar numa função que fizesse corresponder 1 aos instantes em que ele estivesse preso e 0 aos restantes, com a condição de que a quantidade de tempo em que estivesse preso teria que ser da mesma cardinalidade do tempo em que estivesse liberto. Pensando nos números racionais e irracionais positivos, e fazendo corresponder, por exemplo os tempos irracionais aos instantes de presídio e os tempos racionais aos de liberdade, de facto são ambos infinitos, mas há muito mais números irracionais do que racionais, a cardinalidade de um é um infinito muito maior que a cardinalidade de outro, por isso mesmo assim não servia para determinar a solução desta questão. Mais uma vez, o Fábio tem razão, metade de infinito é infinito e ainda acrescento que metade de um infinito grande é o mesmo infinito grande (que é a cardinalidade dos números reais). Muito interessante esta questão. Ainda me lembro de, no meu primeiro emprego ter uma discussão com a directora que afirmava que "infinito é um número muito grande"... sem comentários...
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: Prisão perpétua

Mensagempor Paulo Beto » Ter Jul 28, 2009 09:58

Como a pena foi reduzida à metade, ele fica 12 horas na cadeia e 12 fora dela, todos os dias.
Paulo Beto
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jul 27, 2009 23:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Prisão perpétua

Mensagempor nogueira » Qui Out 01, 2009 17:42

seguindo que ele tem que ficar um tempo x em casa e outro tempo x na cadeia...... como determinar esse tempo, pois se comecarmos com ele na cadeia e ele morrer antes de cumprir o tempo em casa, nao tera sido a metade, logo devemos reduzir esse tempo, mas ai tem umproblema reduzir até quanto.......em matematica, mesmo se resolvermos deixar ele solto 1 segundo e preso outro segundo, o problema eprsiste.
Mas no campo juridico a solução é facil, como o reu nao deve ser prejudicado, basta alternar um mesmo tempo preso e outro solto, no entanto, iniciamos com ele solto, pois se ele morrer tera ficado mais tempo solto(pró-reu)
nogueira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 01, 2009 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: lic contabeis
Andamento: cursando

Re: Prisão perpétua

Mensagempor Luiz Augusto Prado » Sex Nov 27, 2009 20:36

infinito_a / 2 = infinito_b

Se deixar um prisioneiro com este tipo de pena sair da cadeia um dia que seja ele não volta mais.
Se ele vivesse perpétuamente (infinito_a ), este perpétuo é igual ou diferente do perpétuo da pena (infinito_b)?
Como ninguem vive para sempre, ele ficará até o ultimo dia de vida na cadeia.
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Desafios Difíceis

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D