por Douglas16 » Dom Mar 31, 2013 16:36
Determinar os valores das constantes

e

de tal forma que

exista.
Depois, calcular o limite.
A única conclusão ou informação que consegui até agora é que b=-(a+1), isso vem do fato que para o valor limite existir, uma das condições é que tanto o limite do denominador quanto do numerador devem ser igual a zero, e a outra condição é a expressão seja tal que através do

eu possa eliminar a indeterminação

, ou seja eliminar

.
Mas não vejo uma forma de fazer isso.
Tentei fazer a substituição:

, mas ainda não vejo uma saída.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por Douglas16 » Dom Mar 31, 2013 19:31
A expressão do numerador pode ser fatorada como:

, admitindo x=-4.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Dom Mar 31, 2013 20:23
Considere :

quando

.
O limite a ser calculado será então :

ou

ou

ou ainda ,

.
Mas,

, então :
vemos então que o limite existe se ,e somente se ,

(Por quê ?)
Ou seja ,dado um

(ou

) real ,temos que

(ou

.) .Nestas condições o limite existirá .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Douglas16 » Dom Mar 31, 2013 22:44
Isso eu sei.
Mas considerando que a expressão do numerador pode ser fatorada como uma expressão quadrática em dois fatores:
Considerando X=

, tenho que: 2X²+aX-(a+2)=(2X+a+2)(X-1) (expressão 1)
Logo vejo que o fator que possui a constante a, só zera quando a=-4 e usando este valor para encontrar o de b=3, sei que esse são os valores constantes, mas não sei como e porquê.
Para mim, o valor de a na expressão 1, deve ser tal que contenha o fator k^4, para eliminar a indeterminação.
Depois fazer a resolução para encontrar o valor limite.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Dom Mar 31, 2013 23:41
Na minha opinião ,sua solução não faz sentido ,qual finalidade de adotar este método ? Além do mais ,no denominador temos um polinômio enquanto no numerador não,portanto, não faz sentido a seguinte frase :
Douglas16 escreveu:Para mim, o valor de a na expressão 1, deve ser tal que contenha o fator k^4, para eliminar a indeterminação.
Depois fazer a resolução para encontrar o valor limite.
É isso ,caso dúvidas retorne .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Douglas16 » Seg Abr 01, 2013 02:16
Quanto ao polinômio, o correto é que eu teria de dizer: Deve-se eliminar a indeterminação

, eliminando ou assimilando por alguma identidade o termo

.
Agora veja se estou resolvendo corretamente:
Para que o limite exista:
(1)

(equação 1)
Portanto

,

(equação 2)
(2) Deve-se eliminar a indeterminação

, eliminando ou assimilando por alguma identidade o termo

.
Fazendo a substituição da equação 2 na equação 1:

Fazendo X=

, tenho que:
2X²+

*X-

=(2X+a+2)(X-1) (equação 3)
Se X-1=

e

-1=

e

e de

, portanto

(equação 4),
Portanto:

Assim (equação 3)/

, fica: [(2X+a+2)/

]*

E para que o limite exista 2X+a+2=0 quando

, portanto a=-4 e b=3.
Portanto o limite é

.
Concluindo:

e

. O valor do limite é

.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Seg Abr 01, 2013 13:31
Agora que observei que cometi um equívoco ,na verdade é

e não

,fazendo

fica no denominador

e não

.Caso fosse

no denominador ,fixado

o limite sempre existiria, como mostra o wolframalpha :
http://www.wolframalpha.com/input/?i=li ... to++pi%2F2 , como não é o caso ,temos que impor mais condições sobre "a" e "b" .Peço desculpas pelo equívoco , parabéns pela dedicação a questão ,concluiu corretamente .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quais os possíveis valores que satisfazem os valores reais
por andersontricordiano » Seg Fev 24, 2014 22:53
- 1 Respostas
- 4935 Exibições
- Última mensagem por Russman

Ter Fev 25, 2014 02:17
Números Complexos
-
- constantes de proporcionalidades
por Fabricio dalla » Qui Mar 31, 2011 17:47
- 1 Respostas
- 1509 Exibições
- Última mensagem por Elcioschin

Qui Mar 31, 2011 19:09
Álgebra Elementar
-
- QUESTÃO INTEGRAL COM CONSTANTES!
por iel » Seg Jun 01, 2009 22:38
- 1 Respostas
- 3120 Exibições
- Última mensagem por Molina

Ter Jun 02, 2009 06:24
Cálculo: Limites, Derivadas e Integrais
-
- (Limites) Encontrar as constantes
por Haahs » Qua Nov 04, 2009 00:32
- 7 Respostas
- 6570 Exibições
- Última mensagem por Lucio Carvalho

Dom Abr 20, 2014 20:32
Cálculo
-
- Limites com constantes positivas
por EulaCarrara » Qua Abr 21, 2010 15:59
- 2 Respostas
- 2058 Exibições
- Última mensagem por MarceloFantini

Qua Abr 21, 2010 18:43
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.