por Jovilaco » Dom Mar 24, 2013 19:15
Eu emperrei neste exercício que o professor passou na lista, eu não me lembro direito o que faço pra resolver... acho o MMC passou pela minha cabeça... não me lembro se existia alguma propriedade de inequações que me ajudasse a resolver este exercício. Obrigado.
Se vocês conseguirem me mostrar passo a passo eu agradeço imensamente.
1/(x+1)<2/(3x-1)
-
Jovilaco
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mar 14, 2013 21:12
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mar 24, 2013 19:35
Olá
Jovilaco,
boa noite!

Tente concluir, caso contrário, retorne!
Att,
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Jovilaco » Dom Mar 24, 2013 22:07
Nossa... eu tava tentando multiplicar em x.... -_-
Pq o sinal da igualdade não se inverteu ao multiplicarmos a incognita pelo negativo?
-
Jovilaco
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mar 14, 2013 21:12
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Sex Mar 29, 2013 01:04
Jovilaco,
desculpe-me pela demora!
Não inverti o sinal da desigualdade por que não multipliquei a incógnita pelo negativo.
Vale lembrar que, do lado direito da desigualdade devemos ter apenas o zero (bem como fiz na segunda linha da 'resolução').
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Gráfico da função modular] envolvendo fração
por Lara_cardoso » Qui Abr 05, 2012 12:11
- 6 Respostas
- 5772 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 08:33
Funções
-
- [Fração] Ajuda em problema de fração.
por smlspirit » Sex Mai 18, 2012 01:17
- 3 Respostas
- 3628 Exibições
- Última mensagem por DanielFerreira

Dom Mai 20, 2012 17:06
Álgebra Elementar
-
- Ajuda com integral envolvendo tgx e sen^2x
por kryzay » Qua Mar 07, 2012 09:02
- 4 Respostas
- 2396 Exibições
- Última mensagem por kryzay

Qua Mar 07, 2012 15:34
Cálculo: Limites, Derivadas e Integrais
-
- Questão envolvendo derivadas:
por arthurvct » Qui Mai 16, 2013 17:15
- 2 Respostas
- 1483 Exibições
- Última mensagem por arthurvct

Qui Mai 16, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- [Questão Envolvendo Calendário]
por Maria77 » Dom Jun 29, 2014 19:00
- 1 Respostas
- 1629 Exibições
- Última mensagem por e8group

Dom Jun 29, 2014 23:22
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.