por Douglas16 » Dom Mar 10, 2013 17:24
Determine as constantes a, b, e c de tal forma que satisfaçam a seguinte relação.
![\lim_{x\rightarrow0} \frac{\sqrt[]{1+x}-\left(1+a*x+b*x*x \right)}{x*x*x}=c \lim_{x\rightarrow0} \frac{\sqrt[]{1+x}-\left(1+a*x+b*x*x \right)}{x*x*x}=c](/latexrender/pictures/9e2431bf4f4217ae0714cec12188140c.png)
Baseando no fato de que x se aproxima de zero o denominador fica cada vez menor, o que torna o valor do numerador (quando se divide o numerador pelo denominador) cada vez maior e, como o numerador pode ser tanto negativo quanto positivo, minha conclusão (se não esqueci mais detalhes), é:
c= infinito negativo ou infinito positivo e a pertence aos reais e b pertence aos reais.
Será que é lógico e correto o que fiz?
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Dom Mar 10, 2013 23:57
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Douglas16 » Seg Mar 11, 2013 10:10
Muito bem.
Como o exercício não define se a constante c é um valor finito e nem um valor infinito, fica a questão. Considerando c como um valor finito, sua resposta é a correta, mas se c é um valor infinito, penso (se estiver errado corrijam-me) que a resposta do primeiro post é uma alternativa.
Ou o exercício dá as condições necessárias para definir c como um valor finito?
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Seg Mar 11, 2013 11:27
no enunciado ele pede para definir as constantes a, b e c
se c é uma constante podemos assumir que ele é um valor numerico finito.
o enunciado realmente deixou meio vago, mais eu acho que essa é a melhor interpretação
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Douglas16 » Seg Mar 11, 2013 11:51
Sabe o que acontece?
No material didático, em outros exercícios, o enunciado diz: "Calcule os seguintes valores limites" e, tipo, em muitos limites o valor encontrado é infinito positivo ou infinito negativo, mas nestes casos o limite não existe, pois é ilógico considerar o infinito positivo ou infinito negativo como um limite de uma expressão, e isso eu já sabia faz tempo. Mas como em todo começo de exercício tem o tal do enunciado citado anteriormente, passa o tempo e esqueço essa particularidade. Então no meu ponto de vista o erro provém também da forma do enunciado, que induz ao esquecimento desta particularidade, aí quando se tem um exercício como esse, ocorre uma má interpretação das condições dadas para resolver o exercício, aí já viu, vira uma bolinha de neve e kabum!!! Resultado: erro.
Cada coisa, hein...
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por Douglas16 » Seg Mar 11, 2013 12:07
Bem que o enunciado está correto, o que está errado é minha má interpretação.
Como você disse, o enunciado diz que a, b e c são valores constantes, logo não podem ser valores infinitos.
Resolvi o meu erro de interpretação?
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Seg Mar 11, 2013 14:04
é isso mesmo
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Adição de Polinômios minha resposta diferente da do livro
por ravi » Ter Jan 31, 2012 14:02
- 2 Respostas
- 2027 Exibições
- Última mensagem por Arkanus Darondra

Ter Jan 31, 2012 14:49
Polinômios
-
- [Função 2º grau] Minha resposta está certa?
por Richard Oliveira » Sex Mai 04, 2012 03:05
- 1 Respostas
- 1589 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 05, 2012 00:06
Funções
-
- Quero saber se minha resposta está correta
por Raquel299 » Seg Mar 09, 2015 09:53
- 3 Respostas
- 2526 Exibições
- Última mensagem por Raquel299

Sex Abr 10, 2015 10:49
Funções
-
- [Métodos de Contagem] minha resposta não "bateu" !
por Guto150 » Sex Ago 29, 2014 15:19
- 3 Respostas
- 5474 Exibições
- Última mensagem por young_jedi

Sáb Ago 30, 2014 15:53
Binômio de Newton
-
- Exercicos da minha apostila
por Guilherme35 » Qui Set 20, 2012 15:11
- 1 Respostas
- 2557 Exibições
- Última mensagem por LuizAquino

Qui Set 20, 2012 15:52
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.