• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Será que a minha resposta é cabível

Será que a minha resposta é cabível

Mensagempor Douglas16 » Dom Mar 10, 2013 17:24

Determine as constantes a, b, e c de tal forma que satisfaçam a seguinte relação.
\lim_{x\rightarrow0} \frac{\sqrt[]{1+x}-\left(1+a*x+b*x*x \right)}{x*x*x}=c
Baseando no fato de que x se aproxima de zero o denominador fica cada vez menor, o que torna o valor do numerador (quando se divide o numerador pelo denominador) cada vez maior e, como o numerador pode ser tanto negativo quanto positivo, minha conclusão (se não esqueci mais detalhes), é:
c= infinito negativo ou infinito positivo e a pertence aos reais e b pertence aos reais.
Será que é lógico e correto o que fiz?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Será que a minha resposta é cabível

Mensagempor young_jedi » Dom Mar 10, 2013 23:57

neste caso voce tem que determinar a e b de maneira que o valor c seja um numero real.

\lim_{x\to0}\frac{\sqrt{x+1}-(1+ax+bx^2)}{x^3}

\lim_{x\to0}\frac{\sqrt{x+1}-(1+ax+bx^2)}{x^3}.\frac{\sqrt{x+1}+(1+ax+bx^2)}{\sqrt{x+1}+(1+ax+bx^2)}

\lim_{x\to0}\frac{x+1-(1+ax+bx^2)^2}{x^3.(\sqrt{x+1}+(1+ax+bx^2))}

\lim_{x\to0}\frac{x+1-b^2x^4-2abx^3-(2b+a^2)x^2-2ax-1}{x^3.(\sqrt{x+1}+(1+ax+bx^2))}

\lim_{x\to0}\frac{x-b^2x^4-2abx^3-(2b+a^2)x^2-2ax}{x^3.(\sqrt{x+1}+(1+ax+bx^2))}

\lim_{x\to0}\frac{-b^2x^4-2abx^3+(-2b-a^2)x^2+(1-2a)x}{x^3.(\sqrt{x+1}+(1+ax+bx^2))}

agora nos temos que simplificar o x^3 do denominador com o numerador, mais para isso é necessario que todos os expoentes de x do numerador seja maiores ou iguais a 3 portanto

-2b-a^2=0

e

1-2a=0


portanto temos que

a=\frac{1}{2}

b=-\frac{1}{8}

assim o limite fica

\lim_{x\to0}\frac{-\frac{1}{64}x^4+\frac{1}{8}x^3}{x^3.(\sqrt{x+1}+(1+\frac{1}{2}x-\frac{1}{8}x^2))}

\lim_{x\to0}\frac{-\frac{1}{64}x+\frac{1}{8}}{(\sqrt{x+1}+(1+\frac{1}{2}x-\frac{1}{8}x^2))}=\frac{1}{16}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Será que a minha resposta é cabível

Mensagempor Douglas16 » Seg Mar 11, 2013 10:10

Muito bem.
Como o exercício não define se a constante c é um valor finito e nem um valor infinito, fica a questão. Considerando c como um valor finito, sua resposta é a correta, mas se c é um valor infinito, penso (se estiver errado corrijam-me) que a resposta do primeiro post é uma alternativa.
Ou o exercício dá as condições necessárias para definir c como um valor finito?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Será que a minha resposta é cabível

Mensagempor young_jedi » Seg Mar 11, 2013 11:27

no enunciado ele pede para definir as constantes a, b e c
se c é uma constante podemos assumir que ele é um valor numerico finito.

o enunciado realmente deixou meio vago, mais eu acho que essa é a melhor interpretação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Será que a minha resposta é cabível

Mensagempor Douglas16 » Seg Mar 11, 2013 11:51

Sabe o que acontece?
No material didático, em outros exercícios, o enunciado diz: "Calcule os seguintes valores limites" e, tipo, em muitos limites o valor encontrado é infinito positivo ou infinito negativo, mas nestes casos o limite não existe, pois é ilógico considerar o infinito positivo ou infinito negativo como um limite de uma expressão, e isso eu já sabia faz tempo. Mas como em todo começo de exercício tem o tal do enunciado citado anteriormente, passa o tempo e esqueço essa particularidade. Então no meu ponto de vista o erro provém também da forma do enunciado, que induz ao esquecimento desta particularidade, aí quando se tem um exercício como esse, ocorre uma má interpretação das condições dadas para resolver o exercício, aí já viu, vira uma bolinha de neve e kabum!!! Resultado: erro.
Cada coisa, hein...
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Será que a minha resposta é cabível

Mensagempor Douglas16 » Seg Mar 11, 2013 12:07

Bem que o enunciado está correto, o que está errado é minha má interpretação.
Como você disse, o enunciado diz que a, b e c são valores constantes, logo não podem ser valores infinitos.
Resolvi o meu erro de interpretação?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Será que a minha resposta é cabível

Mensagempor young_jedi » Seg Mar 11, 2013 14:04

é isso mesmo
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: