• Anúncio Global
    Respostas
    Exibições
    Última mensagem

A expressão abaixo expressa a inexistência de um limite?

A expressão abaixo expressa a inexistência de um limite?

Mensagempor Douglas16 » Sáb Mar 02, 2013 13:23

Eu tenho para mim que quando a variável dependente (y) que pertence a um função, tende ao infinito, então por ser um valor infinito não pode-se dizer que exista um limite. Isso é diferente quando a variável dependente tende a um valor finito, aí sim pode-se dizer que existe um limite. Então qual é a "convenção matemática" para funções em que a variável dependente tende ao infinito. Minha opinião é que não existe. Alguém pode confirmar qual é a convenção sobre isso no mundo matemático, se puder citar fontes oficiais (tipo a sociedade brasileira de matemática, por exemplo). É algo óbvio, creio eu, mas não conheço um material didático que diga explicitamente isso. Só quero saber qual é a posição oficial dos matemáticos sobre isso.
Abaixo segue duas expressões modelo:
1. \lim_{x\rightarrow0}\frac{1}{x*x}
2. \lim_{x\rightarrow0}\frac{x-2}{x*x-x}
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: A expressão abaixo expressa a inexistência de um limite?

Mensagempor Russman » Sáb Mar 02, 2013 18:21

Suponha que tenhamos uma função f(x) e desejamos estudar o que acontece com ela em dado x = x_0. Assim, calculamos o limite \underset{x\rightarrow x_0}{\lim }f(x). Se este limite existir, isto é, se existe um VALOR REAL L tal que \underset{x\rightarrow x_0}{\lim }f(x) = L então dizemos que esta função é limitada por L em x=x_0. Porém, se \underset{x\rightarrow x_0}{\lim }f(x) = \pm \infty então dizemos que a função não é limitada, ou seja, o limite em x=x_0 não existe.

Há casos em que temos de estudar os limites LATERAIS. Estes são calculados quando aproximamos x de x_0 pela esquerda e pela direita. Por exemplo, dizer que

\underset{x\rightarrow 0}{\lim }\left (\frac{1}{x}  \right ) = \infty

é um "erro" comum. Na verdade não um erro, mas sim uma forma corriqueira de dizer que quando aproximamos x de 0 vindo DA DIREITA pela função f(x) = \frac{1}{x} estamos tendo valores cada vez maiores. Agora, se aproximarmos x peka esquerda nessa função teremos não mais \infty e sim - \infty. De fato,

ScreenHunter_01 Mar. 02 17.19.gif
Graáfico
ScreenHunter_01 Mar. 02 17.19.gif (4.51 KiB) Exibido 1364 vezes


Vemos claramente que

\underset{x\rightarrow 0^-}{\lim }\left (\frac{1}{x}  \right ) = -\infty
\underset{x\rightarrow 0^+}{\lim }\left (\frac{1}{x}  \right ) = +\infty

Assim, o limite bilateral não existe e a função não é diferenciável nesse ponto e blá, blá, blá... ;))
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: A expressão abaixo expressa a inexistência de um limite?

Mensagempor Douglas16 » Sáb Mar 02, 2013 19:38

Então resumindo: muito do que se fala é na verdade um erro na forma de se expressar. Pois colocar um sinal de igual e depois dele um símbolo matemático de infinito deve ser traduzido como "cada vez maior" e não que se possa admitir o infinito como um limite, isso é ilógico. Game over :?:
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59