por Douglas16 » Sáb Mar 02, 2013 13:23
Eu tenho para mim que quando a variável dependente (y) que pertence a um função, tende ao infinito, então por ser um valor infinito não pode-se dizer que exista um limite. Isso é diferente quando a variável dependente tende a um valor finito, aí sim pode-se dizer que existe um limite. Então qual é a "convenção matemática" para funções em que a variável dependente tende ao infinito. Minha opinião é que não existe. Alguém pode confirmar qual é a convenção sobre isso no mundo matemático, se puder citar fontes oficiais (tipo a sociedade brasileira de matemática, por exemplo). É algo óbvio, creio eu, mas não conheço um material didático que diga explicitamente isso. Só quero saber qual é a posição oficial dos matemáticos sobre isso.
Abaixo segue duas expressões modelo:


-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por Russman » Sáb Mar 02, 2013 18:21
Suponha que tenhamos uma função

e desejamos estudar o que acontece com ela em dado

. Assim, calculamos o limite

. Se este limite existir, isto é, se existe um VALOR REAL

tal que

então dizemos que esta função é limitada por

em

. Porém, se

então dizemos que a função não é limitada, ou seja, o limite em

não existe.
Há casos em que temos de estudar os limites LATERAIS. Estes são calculados quando aproximamos

de

pela esquerda e pela direita. Por exemplo, dizer que

é um "erro" comum. Na verdade não um erro, mas sim uma forma corriqueira de dizer que quando aproximamos

de

vindo DA DIREITA pela função

estamos tendo valores cada vez maiores. Agora, se aproximarmos

peka esquerda nessa função teremos não mais

e sim

. De fato,

- Graáfico
- ScreenHunter_01 Mar. 02 17.19.gif (4.51 KiB) Exibido 1479 vezes
Vemos claramente que


Assim, o limite bilateral não existe e a função não é diferenciável nesse ponto e blá, blá, blá...

)
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Douglas16 » Sáb Mar 02, 2013 19:38
Então resumindo: muito do que se fala é na verdade um erro na forma de se expressar. Pois colocar um sinal de igual e depois dele um símbolo matemático de infinito deve ser traduzido como "cada vez maior" e não que se possa admitir o infinito como um limite, isso é ilógico. Game over

-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inexistência de um limite
por fisicanaveia » Sáb Ago 16, 2014 00:21
- 5 Respostas
- 3323 Exibições
- Última mensagem por Man Utd

Qua Ago 27, 2014 19:15
Cálculo: Limites, Derivadas e Integrais
-
- Qual é o sinal da expressão abaixo?
por andersontricordiano » Sex Ago 12, 2011 22:26
- 3 Respostas
- 4570 Exibições
- Última mensagem por andersontricordiano

Seg Ago 15, 2011 20:29
Trigonometria
-
- Simplifique a expressão com radicais duplos abaixo:
por Bryan Sales » Dom Jul 20, 2014 19:11
- 1 Respostas
- 3538 Exibições
- Última mensagem por Soprano

Sex Mar 04, 2016 09:51
Aritmética
-
- Dificuldade na expressã numérica
por mazoni » Seg Jun 21, 2010 18:09
- 1 Respostas
- 1219 Exibições
- Última mensagem por gustavowelp

Seg Jun 28, 2010 19:10
Álgebra Elementar
-
- PUCRS Encontre a equação que expressa o grafico
por Marcos1978 » Sáb Nov 26, 2011 18:43
- 3 Respostas
- 5495 Exibições
- Última mensagem por MarceloFantini

Dom Nov 27, 2011 02:02
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.