• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Limite com incógnitas

[LIMITE] Limite com incógnitas

Mensagempor paulorobertoqf » Qua Fev 20, 2013 14:05

Se, para dados n, m \in \aleph, o limite \lim_{x\rightarrow\infty} \frac{3m.{x}^{n}+1}{n.{x}^{m}+3} é finito e não nulo, então seu valor deve ser igual a:

Resposta: 3

Pessoal, estou estudando limites mas não consegui chegar a este resultado. Tentei fazer pelo teorema de L'hopital, mas nunca dá certo. Até o professor não sabe como faz. Poderiam ajudar??
paulorobertoqf
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Fev 20, 2013 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limite com incógnitas

Mensagempor young_jedi » Qua Fev 20, 2013 20:39

pelo teorema de l'Hospital

\lim_{x\to\infty}\frac{3m.x^n+1}{nx^m+3}=\lim_{x\to\infty}\frac{3m.n.x^{n-1}}{n.m.x^{m-1}}

=\lim_{x\to\infty}3.\frac{x^{n-1}}{x^{m-1}}

neste caso temos tres possibilidades caso m seja maior que n então este limite tende para zero
se n é maior que m então o limite tende para infinito
mais se m é igual a n então o limite é igual a tres
como o enunciado diz que o limite é finito e não nulol, então so podemos ter o terceiro caso onde n=m e portanto o limite é igual a 3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [LIMITE] Limite com incógnitas

Mensagempor paulorobertoqf » Qua Fev 20, 2013 20:49

Muito bom.... obrigado pela pronta explicação!!
Vou continuar meus estudos.

Valeu!
paulorobertoqf
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Fev 20, 2013 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.