• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Limite com incógnitas

[LIMITE] Limite com incógnitas

Mensagempor paulorobertoqf » Qua Fev 20, 2013 14:05

Se, para dados n, m \in \aleph, o limite \lim_{x\rightarrow\infty} \frac{3m.{x}^{n}+1}{n.{x}^{m}+3} é finito e não nulo, então seu valor deve ser igual a:

Resposta: 3

Pessoal, estou estudando limites mas não consegui chegar a este resultado. Tentei fazer pelo teorema de L'hopital, mas nunca dá certo. Até o professor não sabe como faz. Poderiam ajudar??
paulorobertoqf
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Fev 20, 2013 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limite com incógnitas

Mensagempor young_jedi » Qua Fev 20, 2013 20:39

pelo teorema de l'Hospital

\lim_{x\to\infty}\frac{3m.x^n+1}{nx^m+3}=\lim_{x\to\infty}\frac{3m.n.x^{n-1}}{n.m.x^{m-1}}

=\lim_{x\to\infty}3.\frac{x^{n-1}}{x^{m-1}}

neste caso temos tres possibilidades caso m seja maior que n então este limite tende para zero
se n é maior que m então o limite tende para infinito
mais se m é igual a n então o limite é igual a tres
como o enunciado diz que o limite é finito e não nulol, então so podemos ter o terceiro caso onde n=m e portanto o limite é igual a 3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [LIMITE] Limite com incógnitas

Mensagempor paulorobertoqf » Qua Fev 20, 2013 20:49

Muito bom.... obrigado pela pronta explicação!!
Vou continuar meus estudos.

Valeu!
paulorobertoqf
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Fev 20, 2013 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.