por brunnoguilherme » Dom Jan 13, 2013 20:04
Use o método de multiplicadores de Lagrange para achar um valor mínimo relativo a função f para a qual
f(x,y,z)=x²+4y²+16z² com o vínculo (a)xyz = 1; (b)xy = 1; (c)x = 1.
-
brunnoguilherme
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Jan 13, 2013 00:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Fisica
- Andamento: cursando
por Russman » Dom Jan 13, 2013 22:12
Você só precisa resolver o sistema

onde

é a função a ser otimizada,

a função de restrição( ou vínculo),

o multiplicador e

o nível da restrição.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 20:01
- 1 Respostas
- 1367 Exibições
- Última mensagem por timoteo

Dom Jan 13, 2013 23:07
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda em Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 00:32
- 1 Respostas
- 2880 Exibições
- Última mensagem por young_jedi

Dom Jan 13, 2013 12:52
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de minimos,máximos usando multiplos de lagrange
por Fernandobertolaccini » Seg Jan 05, 2015 16:39
- 1 Respostas
- 1477 Exibições
- Última mensagem por Russman

Ter Jan 06, 2015 01:13
Cálculo: Limites, Derivadas e Integrais
-
- Multiplicadores de Lagrange
por Zkz » Sex Jun 05, 2009 21:00
- 0 Respostas
- 1842 Exibições
- Última mensagem por Zkz

Sex Jun 05, 2009 21:00
Cálculo: Limites, Derivadas e Integrais
-
- Multiplicadores de Lagrange
por luciamoura » Sex Nov 26, 2010 17:55
- 0 Respostas
- 1655 Exibições
- Última mensagem por luciamoura

Sex Nov 26, 2010 17:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.