• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite - Funções Logarítmica

Limite - Funções Logarítmica

Mensagempor Jamyson » Dom Jan 13, 2013 16:34

Gente estou com muita dúvida neste limite, já tentei de varias maneiras resolver ele, mas ainda não consegui..
A resposta no livro do Guidorozzi é 0.
Já fiz uma mudança de Variável
u = {e}^{{x}^{2}} - 1, \Rightarrow x = \sqrt[2]{Ln\left(u+1 \right)}

\lim_{x\rightarrow0} \frac{{e}^{{x}^{2}} -1}{x} = \lim_{u\rightarrow0} = \frac{u}{\sqrt[2]{Ln\left(u+1 \right)}}

Eu cheguei um pouco mais longe, mas é complicado por aqui no site...
Se puderem me explicar, Agradeço.. :-D
Jamyson
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Jan 12, 2013 18:44
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Limite - Funções Logarítmica

Mensagempor e8group » Dom Jan 13, 2013 18:12

Boa tarde , multiplique o numerador e o denominador por x . Utilize a propriedade "limite do produto é o produto dos limites " . Além disso , mostre que um destes produtos dos limites é 1(usando o limite fundamental .E , o outro limite resulta zero .

Qualquer dúvida só postar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite - Funções Logarítmica

Mensagempor Jamyson » Dom Jan 13, 2013 19:46

\frac{u\sqrt[2]{Ln\left(u+1 \right)}}{Ln\left(u+1 \right)}

Parei logo ai, já revisei umas propriedades logaritmos...
Jamyson
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Jan 12, 2013 18:44
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Limite - Funções Logarítmica

Mensagempor e8group » Dom Jan 13, 2013 20:15

Boa noite .Note que ,

\lim_{x\to 0} \frac{e^{x^2} - 1}{x} =  \lim_{x\to 0} \frac{e^{x^2} - 1}{x^2} \cdot x = \lim_{x\to 0} \frac{e^{x^2} - 1}{x^2} \cdot \lim_{x\to 0} x = ln(e) \cdot 0 = 1 \cdot 0 = 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite - Funções Logarítmica

Mensagempor Jamyson » Dom Jan 13, 2013 23:04

Caramba, eu nunca iria resolver,
ObrigadO :-D
Jamyson
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Jan 12, 2013 18:44
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.