• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar p

Determinar p

Mensagempor Rafael16 » Sex Dez 28, 2012 17:50

Eai gente!

Um conjunto formado por p+2 elementos possui 12 subconjuntos a mais do que um conjunto formado por p elementos. Determine p.

Cheguei na equação abaixo mas não consigo resolvê-la:

{2}^{p+2}={2}^{p}+12
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Determinar p

Mensagempor DanielFerreira » Sex Dez 28, 2012 21:27

O conjunto formado por p elementos possui 2^n subconjuntos, então:

\begin{cases} p \Rightarrow 2^p \\ (p + 2) \Rightarrow 2^{p + 2} \end{cases}


Do enunciado, temos:

2^{p + 2} = 2^p + 12

Respondendo sua dúvida...

\\ 2^{p + 2} = 2^p + 12 \\\\ 2^p \cdot 2^2 = 2^p + 12 \\\\ 4 \cdot 2^p - 2^p = 12 \\\\ 3 \cdot 2^p = 12 \\\\ 2^p = \frac{12}{3} \\\\ 2^p = 4 \\\\ 2^p = 2^2 \\\\ \boxed{\boxed{p = 2}}

Comente qualquer dúvida!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Determinar p

Mensagempor Rafael16 » Sáb Dez 29, 2012 15:12

Obrigado Daniel !

4.2^{p}-2^{p}=12 --> Eu pensava que não podia subtrair 4.2^{p} com 2^{p}.
No ensino fundamental eu aprendi que primeiro deve resolver as potencias, e só depois resolver as outras operações.

Mas enfim, se tivesse, por exemplo, 2^{x} + 3^{x}, isso daria 5^{x}?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Determinar p

Mensagempor e8group » Sáb Dez 29, 2012 17:09

Boa tarde .

Rafael16 escreveu:
Obrigado Daniel !

--> Eu pensava que não podia subtrair com .
No ensino fundamental eu aprendi que primeiro deve resolver as potencias, e só depois resolver as outras operações.

Mas enfim, se tivesse, por exemplo, , isso daria ?


Acontece que há casos que nem sempre há como resolver a potência primeiro .

Dica :

Temos ,

4 \cdot 2^p - 2^p = 12

Deixando , 2^p em evidência segue que 4 \cdot 2^p - 2^p  =  2^p (4 - 1)   = 3 \cdot 2^p .

Outra forma de pensar ...

Suponhamos que para algum p natural , temos 2^p = r > 0 .

Assim ,

4r - r = 3r .

E, assim sucessivamente para cada p natural vamos ter um resultado natural multiplo de 3 (4 \cdot 2^p - 2^p ).

Para p = 1 , temos 4 \cdot 2^1 - 2^1  = 4\cdot 2 - 2 = 6 = 2\cdot 3 = 3 \cdot 2^1 .

Agora será mesmo que 3^x + 2^x = 5^x . Para isto ser verdade ,temos que mostrar que para qualquer x real a igualdade seja verdadeira .

Se x = 1 .

2^1 + 3^1 = 5 .

E

5^1  = 5 . Parece ser verdadeiro . (Cuidado) Para x = 0 , 2^0 + 3^0 = 1 + 1 = 2  \neq  5^0  = 1 .

É importante ter cuidado . Recomendo que observe uma expressão e veja se há fatores em comum ,isto é muito útil nestes casos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}