• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar p

Determinar p

Mensagempor Rafael16 » Sex Dez 28, 2012 17:50

Eai gente!

Um conjunto formado por p+2 elementos possui 12 subconjuntos a mais do que um conjunto formado por p elementos. Determine p.

Cheguei na equação abaixo mas não consigo resolvê-la:

{2}^{p+2}={2}^{p}+12
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Determinar p

Mensagempor DanielFerreira » Sex Dez 28, 2012 21:27

O conjunto formado por p elementos possui 2^n subconjuntos, então:

\begin{cases} p \Rightarrow 2^p \\ (p + 2) \Rightarrow 2^{p + 2} \end{cases}


Do enunciado, temos:

2^{p + 2} = 2^p + 12

Respondendo sua dúvida...

\\ 2^{p + 2} = 2^p + 12 \\\\ 2^p \cdot 2^2 = 2^p + 12 \\\\ 4 \cdot 2^p - 2^p = 12 \\\\ 3 \cdot 2^p = 12 \\\\ 2^p = \frac{12}{3} \\\\ 2^p = 4 \\\\ 2^p = 2^2 \\\\ \boxed{\boxed{p = 2}}

Comente qualquer dúvida!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Determinar p

Mensagempor Rafael16 » Sáb Dez 29, 2012 15:12

Obrigado Daniel !

4.2^{p}-2^{p}=12 --> Eu pensava que não podia subtrair 4.2^{p} com 2^{p}.
No ensino fundamental eu aprendi que primeiro deve resolver as potencias, e só depois resolver as outras operações.

Mas enfim, se tivesse, por exemplo, 2^{x} + 3^{x}, isso daria 5^{x}?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Determinar p

Mensagempor e8group » Sáb Dez 29, 2012 17:09

Boa tarde .

Rafael16 escreveu:
Obrigado Daniel !

--> Eu pensava que não podia subtrair com .
No ensino fundamental eu aprendi que primeiro deve resolver as potencias, e só depois resolver as outras operações.

Mas enfim, se tivesse, por exemplo, , isso daria ?


Acontece que há casos que nem sempre há como resolver a potência primeiro .

Dica :

Temos ,

4 \cdot 2^p - 2^p = 12

Deixando , 2^p em evidência segue que 4 \cdot 2^p - 2^p  =  2^p (4 - 1)   = 3 \cdot 2^p .

Outra forma de pensar ...

Suponhamos que para algum p natural , temos 2^p = r > 0 .

Assim ,

4r - r = 3r .

E, assim sucessivamente para cada p natural vamos ter um resultado natural multiplo de 3 (4 \cdot 2^p - 2^p ).

Para p = 1 , temos 4 \cdot 2^1 - 2^1  = 4\cdot 2 - 2 = 6 = 2\cdot 3 = 3 \cdot 2^1 .

Agora será mesmo que 3^x + 2^x = 5^x . Para isto ser verdade ,temos que mostrar que para qualquer x real a igualdade seja verdadeira .

Se x = 1 .

2^1 + 3^1 = 5 .

E

5^1  = 5 . Parece ser verdadeiro . (Cuidado) Para x = 0 , 2^0 + 3^0 = 1 + 1 = 2  \neq  5^0  = 1 .

É importante ter cuidado . Recomendo que observe uma expressão e veja se há fatores em comum ,isto é muito útil nestes casos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D