por Rafael16 » Sex Dez 28, 2012 17:50
Eai gente!
Um conjunto formado por p+2 elementos possui 12 subconjuntos a mais do que um conjunto formado por p elementos. Determine p.
Cheguei na equação abaixo mas não consigo resolvê-la:

-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por DanielFerreira » Sex Dez 28, 2012 21:27
O conjunto formado por

elementos possui

subconjuntos, então:

Do enunciado, temos:

Respondendo sua dúvida...

Comente qualquer dúvida!
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Rafael16 » Sáb Dez 29, 2012 15:12
Obrigado Daniel !

--> Eu pensava que não podia subtrair

com

.
No ensino fundamental eu aprendi que primeiro deve resolver as potencias, e só depois resolver as outras operações.
Mas enfim, se tivesse, por exemplo,

, isso daria

?
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por e8group » Sáb Dez 29, 2012 17:09
Boa tarde .
Rafael16 escreveu:
Obrigado Daniel !
--> Eu pensava que não podia subtrair com .
No ensino fundamental eu aprendi que primeiro deve resolver as potencias, e só depois resolver as outras operações.
Mas enfim, se tivesse, por exemplo, , isso daria ?
Acontece que há casos que nem sempre há como resolver a potência primeiro .
Dica :
Temos ,
Deixando ,

em evidência segue que

.
Outra forma de pensar ...
Suponhamos que para algum

natural , temos

.
Assim ,

.
E, assim sucessivamente para cada

natural vamos ter um resultado natural multiplo de 3 (

).
Para

, temos

.
Agora será mesmo que

. Para isto ser verdade ,temos que mostrar que para qualquer

real a igualdade seja verdadeira .
Se

.

.
E

. Parece ser verdadeiro . (Cuidado) Para

,

.
É importante ter cuidado . Recomendo que observe uma expressão e veja se há fatores em comum ,isto é muito útil nestes casos .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinar a e b
por gabrielloren » Qua Set 05, 2012 16:12
- 1 Respostas
- 1987 Exibições
- Última mensagem por Russman

Qua Set 05, 2012 18:59
Números Complexos
-
- Determinar x1, x2 e x3
por nanasouza123 » Sex Set 22, 2017 20:50
- 0 Respostas
- 2032 Exibições
- Última mensagem por nanasouza123

Sex Set 22, 2017 20:50
Polinômios
-
- Determinar o domínio
por rodsales » Qui Jun 18, 2009 20:59
- 2 Respostas
- 3763 Exibições
- Última mensagem por rodsales

Sex Jun 19, 2009 20:58
Trigonometria
-
- Determinar a função
por yonara » Ter Jun 30, 2009 20:19
- 1 Respostas
- 3711 Exibições
- Última mensagem por Felipe Schucman

Seg Ago 03, 2009 21:15
Cálculo: Limites, Derivadas e Integrais
-
- Determinar variável
por kgb67 » Qui Abr 29, 2010 11:37
- 1 Respostas
- 1717 Exibições
- Última mensagem por DeMoNaZ

Qui Abr 29, 2010 13:45
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.