• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por substituição] Ajuda, por favor?

[Integração por substituição] Ajuda, por favor?

Mensagempor Ronaldobb » Dom Dez 16, 2012 18:44

9. Use a técnica da substituição para calcular \int_{0}^{1}x(1-x)^ndx.

(Dica: u=1-x)

Minhas contas:

u=-x+1

du=-dx

x=-u+1

=\int_{0}^{1}(-u+1)u^n-du

=-1\int_{1}^{0}(-u+1)u^ndu

=\int_{1}^{0}-{u}^{n+1}+u^ndu

=-2\int_{1}^{0}{u}^{n+1}+u^ndu

=-2\frac{{u}^{n+2}}{n+2}+\frac{{u}^{n+1}}{n+1}

=-2\frac{{(-x+1)}^{n+2}}{n+2}+\frac{{(-x+1)}^{n+1}}{n+1}

Fazendo o Teorema Fundamental do Cálculo F(b)-F(a):

O meu resultado foi 0.

Estou correto?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Integração por substituição] Ajuda, por favor?

Mensagempor Ronaldobb » Dom Dez 16, 2012 18:45

A área do meu cálculo dessa Integral definida deu zero. Está certo?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Integração por substituição] Ajuda, por favor?

Mensagempor Ronaldobb » Dom Dez 16, 2012 18:47

O limites de integração são:

\int_{0}^{1}x(1-x)dx

Limite inferior igual a 0 e limite superior igual a 1
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59