• Anúncio Global
    Respostas
    Exibições
    Última mensagem

angulo

angulo

Mensagempor cristina » Qua Set 23, 2009 00:08

se tg x = m e tg 2x = 3m, com m > 0, o valor do angulo x é:


sendo sen a=m e cos a =n, com 0< x < \frac{\pi}{2}
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: angulo

Mensagempor Molina » Qua Set 23, 2009 00:44

Confirma Cristina, isso são duas questões, certo?

cristina escreveu:se tg x = m e tg 2x = 3m, com m > 0, o valor do angulo x é:


Use a fórmula da tangente de arco duplo:

tg(2x)=\frac{2tgx}{1-tg^2x}

Você consegue continuar a partir daqui?

Chame tg(2x) de 3m e tgx de m.

Com isso você vai descobrir alguns m's, mas só um servirá! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: angulo

Mensagempor cristina » Qui Set 24, 2009 17:02

Olá Molina...
São duas questoes....

obrigada
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: angulo

Mensagempor Molina » Qui Set 24, 2009 22:33

O que você quer saber na segunda questão?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: angulo

Mensagempor cristina » Ter Set 29, 2009 11:28

Na segunda questão pede pra marcar as alternativas corretas...
sen \left(\frac{\pi}{2}- a \right)= n
cos \left(\frac{\pi}{2}+ a \right)= - m
cos \left(\pi - a \right) = - n
sen \left(\pi + a \right) = m

mas não entendi como resolver.... e em relação a dica da questão 1 não consigo resolver...
poderia me explicar melhor?
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}