• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Duvidas na hora da substituição.

[Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Sáb Out 06, 2012 03:26

Então, empaquei em mais uma aqui, só q ta bem complicado para mim enxergar essa substituição. E dado essa integral:
\int_{}^{} \frac{{x}^{2}+1}{\sqrt[3]{x+1}}dx
Posso escreve-la assim:
\int_{}^{}\frac{{x}^{2}+1}{{\left(x+1 \right)}^{\frac{1}{3}}}dx
chamando:
u={{\left(x+1 \right)}^{\frac{1}{3}}}
então temos que:
du=\frac{1}{3\sqrt[3]{{u}^{2}}}dx
Só que não consegui manipular essa expressão, de forma que substitua a outra.
Devo usar outro artifício algébrico?? quall??
Obrigado!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Duvidas na hora da substituição.

Mensagempor MarceloFantini » Sáb Out 06, 2012 14:40

A substituição u=x+1 parece servir melhor, então du = dx e assim

\int \frac{x^2 +1}{\sqrt[3]{x+1}} \, dx = \int \frac{(u-1)^2 +1}{u^{\frac{1}{3}}} \, du = \int \frac{u^2 -2u +2}{u^{\frac{1}{3}}} \, du.

Termine.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Sáb Out 06, 2012 17:59

Obrigado Marcelo!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Dom Nov 25, 2012 14:21

Estou em duvida quanto o resultado.
Essa integral que chegamos através daquela substituição \int_{}^{}\frac{{u}^{2}-2u+2}{{u}^{\frac{1}{3}}}du é a mais pratica??
pois ai terei que fazer um integração por partes. do tipo: \int_{}^{}wdv=wv-\int_{}^{}vdw
E vou chegar nisso:
\frac{{u}^{\frac{10}{3}}}{3}-{u}^{\frac{7}{3}}+{2u}^{\frac{4}{3}}-\frac{{u}^{\frac{14}{3}}}{42}-\frac{{u}^{\frac{11}{3}}}{11}+\frac{{u}^{\frac{8}{3}}}{4}+c
Mas isso esta correto??
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Duvidas na hora da substituição.

Mensagempor MarceloFantini » Dom Nov 25, 2012 19:17

Sim, é a mais prática pois \frac{u^2 -2u +2}{u^{\frac{1}{3}}} = u^{2 - \frac{1}{3}} - 2 u^{1 - \frac{1}{3}} - 2u^{- \frac{1}{3}}, que é simples.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Dom Nov 25, 2012 23:49

Entendo, erro meu, confundi com outra coisa aqui..
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}