por fabriel » Sáb Out 06, 2012 03:26
Então, empaquei em mais uma aqui, só q ta bem complicado para mim enxergar essa substituição. E dado essa integral:
![\int_{}^{} \frac{{x}^{2}+1}{\sqrt[3]{x+1}}dx \int_{}^{} \frac{{x}^{2}+1}{\sqrt[3]{x+1}}dx](/latexrender/pictures/5fbe32bed75224b85289875b885af99f.png)
Posso escreve-la assim:

chamando:

então temos que:
![du=\frac{1}{3\sqrt[3]{{u}^{2}}}dx du=\frac{1}{3\sqrt[3]{{u}^{2}}}dx](/latexrender/pictures/00d0311be8119106cbfc02d1197ecdeb.png)
Só que não consegui manipular essa expressão, de forma que substitua a outra.
Devo usar outro artifício algébrico?? quall??
Obrigado!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por MarceloFantini » Sáb Out 06, 2012 14:40
A substituição

parece servir melhor, então

e assim
![\int \frac{x^2 +1}{\sqrt[3]{x+1}} \, dx = \int \frac{(u-1)^2 +1}{u^{\frac{1}{3}}} \, du = \int \frac{u^2 -2u +2}{u^{\frac{1}{3}}} \, du \int \frac{x^2 +1}{\sqrt[3]{x+1}} \, dx = \int \frac{(u-1)^2 +1}{u^{\frac{1}{3}}} \, du = \int \frac{u^2 -2u +2}{u^{\frac{1}{3}}} \, du](/latexrender/pictures/bce2eb6f82570457e9ecd995c64d5340.png)
.
Termine.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por fabriel » Sáb Out 06, 2012 17:59
Obrigado Marcelo!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por fabriel » Dom Nov 25, 2012 14:21
Estou em duvida quanto o resultado.
Essa integral que chegamos através daquela substituição

é a mais pratica??
pois ai terei que fazer um integração por partes. do tipo:

E vou chegar nisso:

Mas isso esta correto??
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por MarceloFantini » Dom Nov 25, 2012 19:17
Sim, é a mais prática pois

, que é simples.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por fabriel » Dom Nov 25, 2012 23:49
Entendo, erro meu, confundi com outra coisa aqui..
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [hora] fração de hora
por larissagall » Ter Abr 08, 2014 17:26
- 2 Respostas
- 2743 Exibições
- Última mensagem por larissagall

Qua Abr 09, 2014 09:00
Aritmética
-
- Integral por substituição / Integral por partes
por Carlos28 » Seg Out 19, 2015 12:25
- 1 Respostas
- 2940 Exibições
- Última mensagem por nakagumahissao

Seg Out 19, 2015 23:26
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição
por Aliocha Karamazov » Qui Fev 23, 2012 23:57
- 2 Respostas
- 2326 Exibições
- Última mensagem por MarceloFantini

Sex Fev 24, 2012 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral (substituição)
por kika_sanches » Sex Mar 23, 2012 14:42
- 4 Respostas
- 2944 Exibições
- Última mensagem por kika_sanches

Sex Mar 23, 2012 15:35
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao (u.du)
por menino de ouro » Dom Nov 18, 2012 10:46
- 1 Respostas
- 1736 Exibições
- Última mensagem por young_jedi

Dom Nov 18, 2012 10:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.