• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Duvidas na hora da substituição.

[Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Sáb Out 06, 2012 03:26

Então, empaquei em mais uma aqui, só q ta bem complicado para mim enxergar essa substituição. E dado essa integral:
\int_{}^{} \frac{{x}^{2}+1}{\sqrt[3]{x+1}}dx
Posso escreve-la assim:
\int_{}^{}\frac{{x}^{2}+1}{{\left(x+1 \right)}^{\frac{1}{3}}}dx
chamando:
u={{\left(x+1 \right)}^{\frac{1}{3}}}
então temos que:
du=\frac{1}{3\sqrt[3]{{u}^{2}}}dx
Só que não consegui manipular essa expressão, de forma que substitua a outra.
Devo usar outro artifício algébrico?? quall??
Obrigado!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Duvidas na hora da substituição.

Mensagempor MarceloFantini » Sáb Out 06, 2012 14:40

A substituição u=x+1 parece servir melhor, então du = dx e assim

\int \frac{x^2 +1}{\sqrt[3]{x+1}} \, dx = \int \frac{(u-1)^2 +1}{u^{\frac{1}{3}}} \, du = \int \frac{u^2 -2u +2}{u^{\frac{1}{3}}} \, du.

Termine.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Sáb Out 06, 2012 17:59

Obrigado Marcelo!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Dom Nov 25, 2012 14:21

Estou em duvida quanto o resultado.
Essa integral que chegamos através daquela substituição \int_{}^{}\frac{{u}^{2}-2u+2}{{u}^{\frac{1}{3}}}du é a mais pratica??
pois ai terei que fazer um integração por partes. do tipo: \int_{}^{}wdv=wv-\int_{}^{}vdw
E vou chegar nisso:
\frac{{u}^{\frac{10}{3}}}{3}-{u}^{\frac{7}{3}}+{2u}^{\frac{4}{3}}-\frac{{u}^{\frac{14}{3}}}{42}-\frac{{u}^{\frac{11}{3}}}{11}+\frac{{u}^{\frac{8}{3}}}{4}+c
Mas isso esta correto??
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Duvidas na hora da substituição.

Mensagempor MarceloFantini » Dom Nov 25, 2012 19:17

Sim, é a mais prática pois \frac{u^2 -2u +2}{u^{\frac{1}{3}}} = u^{2 - \frac{1}{3}} - 2 u^{1 - \frac{1}{3}} - 2u^{- \frac{1}{3}}, que é simples.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integral] Duvidas na hora da substituição.

Mensagempor fabriel » Dom Nov 25, 2012 23:49

Entendo, erro meu, confundi com outra coisa aqui..
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: