por rbhorvath » Qua Nov 21, 2012 15:02
Olá Pessoal, estou precisando muito da ajuda de vocês pois preciso resolver esse exercício porém não sei absolutamente nada, e se eu não fizer corro o risco de pegar DP na faculdade...
Prove que, para todo n inteiro positivo, é verdadeira a soma:
1^2+3^2+?+(2n-1)^n=n(2n-1)(2n+1)/3
OBS: O pedaço n(2n-1)(2n+1) é inteiro dividido por 3 (Não consegui formatar) e nao somente o (2n+1)
Se alguém puder me ajudar ficarei eternamente grato !
Obrigado !
-
rbhorvath
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Nov 21, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por young_jedi » Qua Nov 21, 2012 17:06
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por rbhorvath » Qua Nov 21, 2012 18:27
young_jedi, MUITO OBRIGADO me ajudou DEMAIS... cara, sou tão ruim que até quando o exercício ta resolvido tenho dificuldade haha
A resposta então seria: 3.(1² + 3² + 5² + 7²....(2n-1)² ?
MUITO OBRIGADO!

-
rbhorvath
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Nov 21, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por young_jedi » Qua Nov 21, 2012 18:35
é na ultima equação voce passa o 3 dividindo para o outro lado da expressão e ai voce chega justamente na relação que voce queria demonstrar.

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por rbhorvath » Qua Nov 21, 2012 18:39
young_jedi escreveu:é na ultima equação voce passa o 3 dividindo para o outro lado da expressão e ai voce chega justamente na relação que voce queria demonstrar.

Ok, cara MUITO OBRIGADO por ceder um pouco do seu tempo pra me ajudar obrigado mesmo.
Abraços
-
rbhorvath
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Nov 21, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por MarceloFantini » Qua Nov 21, 2012 23:05
Apesar de ser uma solução, ela não é por indução.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por rbhorvath » Qua Nov 21, 2012 23:12
MarceloFantini escreveu:Apesar de ser uma solução, ela não é por indução.
Marcelo, no momento só possuo essa solução que o nosso amigo young_jedi gentilmente resolveu para mim... se você quiser postar outra eu agradeço também !

-
rbhorvath
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Nov 21, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por MarceloFantini » Qua Nov 21, 2012 23:26
Antes que eu me esqueça, não crie tópicos repetidos. Eu joguei o outro na lixeira.
Resolvi comentar que a solução não é por indução porque, apesar de não ter sido explícito no enunciado, você nomeou o tópico como Indução Matemática. Assim presumi que a idéia é resolver por indução. Você sabe quais são os passos para provar uma afirmação por indução?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por rbhorvath » Qua Nov 21, 2012 23:31
MarceloFantini escreveu:Antes que eu me esqueça, não crie tópicos repetidos. Eu joguei o outro na lixeira.
Resolvi comentar que a solução não é por indução porque, apesar de não ter sido explícito no enunciado, você nomeou o tópico como Indução Matemática. Assim presumi que a idéia é resolver por indução. Você sabe quais são os passos para provar uma afirmação por indução?
Então estamos aprendendo indução matemática porém no enunciado o professor não especificou o método que deveria ser resolvido portanto acho que não tem importância como é resolvido e sim o resultado...
Não sei como resolver esse exercício por indução matemática
-
rbhorvath
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Nov 21, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por MarceloFantini » Qua Nov 21, 2012 23:36
rbhorvath escreveu:Então estamos aprendendo indução matemática porém no enunciado o professor não especificou o método que deveria ser resolvido portanto acho que não tem importância como é resolvido e sim o resultado...
Não sei como resolver esse exercício por indução matemática
O resultado você já sabe, não são necessárias todas essas contas. A grande vantagem de demonstrações por indução é justamente provar resultados que não necessariamente tem uma dedução direta.
Para provar um resultado por indução, faça o seguinte:
1) Calcule os dois lados da expressão
separadamente e mostre que são iguais.
2) Assuma que a proposição é válida para

.
3) Mostre que o resultado é válido para

.
Tente fazer o primeiro passo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Qui Nov 22, 2012 10:09
Olá, bom dia a todos!
Resolvendo por indução:
Vamos provar que a igualdade é válida para n = 1---> 1² = 1(2 - 1)(2 + 1)/3 <---> 1=1 (OK)
Vamos supor que seja válida para n = k ---> 1² + 3² + ... + (2k - 1)² = k(2k - 1)(2k + 1)/3
Logo, também será válida para n = k+1. Acompanhe:
1² + 3² + ... + (2k - 1)² + (2k + 1)² = k(2k - 1)(2k + 1)/3 + 4k² + 4k + 1 = (4n³ + 12n² + 11n + 3)/3 = (k + 1)(2(k + 1) - 1)(2(k + 1) + 1)/3
Comente qualquer dúvida
Att,
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por rbhorvath » Qui Nov 22, 2012 14:17
Cleyson007 escreveu:Olá, bom dia a todos!
Resolvendo por indução:
Vamos provar que a igualdade é válida para n = 1---> 1² = 1(2 - 1)(2 + 1)/3 <---> 1=1 (OK)
Vamos supor que seja válida para n = k ---> 1² + 3² + ... + (2k - 1)² = k(2k - 1)(2k + 1)/3
Logo, também será válida para n = k+1. Acompanhe:
1² + 3² + ... + (2k - 1)² + (2k + 1)² = k(2k - 1)(2k + 1)/3 + 4k² + 4k + 1 = (4n³ + 12n² + 11n + 3)/3 = (k + 1)(2(k + 1) - 1)(2(k + 1) + 1)/3
Comente qualquer dúvida
Att,
Cleyson007
Olá Cleyson, muito obrigado por postar essa solução... posso copiar exatamente do jeito que você postou que estará certo?
-
rbhorvath
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Nov 21, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por Cleyson007 » Qui Nov 22, 2012 15:11
Olá rbhorvath!
Sim, está correto
Abraço,
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por rbhorvath » Sex Nov 23, 2012 16:53
Cleyson007 escreveu:Olá rbhorvath!
Sim, está correto
Abraço,
Cleyson007
Ok, MUITO OBRIGADO levarei pra faculdade hoje... espero que dê tudo certo !

-
rbhorvath
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Nov 21, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por M_Junior » Sáb Abr 05, 2014 22:12
olá
Estou com dificulades em provar pelo metodo de indução este somátório.

Atenção, que o valor que esta dentro de ( ) não é uma fração.
Será que alguem me pode ajudar.
Obrigado
M_Junior
-
M_Junior
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Abr 05, 2014 21:24
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- induçao matematica ajuda
por xpanhol » Ter Out 18, 2011 15:07
- 3 Respostas
- 2028 Exibições
- Última mensagem por LuizAquino

Qua Out 19, 2011 20:41
Álgebra Elementar
-
- [Provas por Indução Matemática] Ajuda, por favor!
por aprendizdematematico » Seg Abr 30, 2012 14:23
- 1 Respostas
- 1684 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 05, 2012 20:56
Estatística
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2573 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- Indução Matemática
por gramata » Qua Set 02, 2009 16:52
- 0 Respostas
- 2995 Exibições
- Última mensagem por gramata

Qua Set 02, 2009 16:52
Problemas do Cotidiano
-
- Indução Matemática
por Abelardo » Qui Mar 31, 2011 03:04
- 1 Respostas
- 2438 Exibições
- Última mensagem por LuizAquino

Qui Mar 31, 2011 11:27
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.