Olá pessoal, tenho dúvida na seguinte questão:
Sabendo que 2y+4x-6=0 é a equação de uma das retas que é a tangente a curva y= 2x^3-x^2+cx+d, determine a derivada desta função em um dos pontos da curva.
Como é que eu acho o ponto comum?

será ,
, vamos obter ,
.
. Perceba que ,
é a taxa de variação da reta tangente a curva
. Pelo enunciado sabemos que
é uma das retas tangentes a curva , isso significa que para um y' (a) temos que 

Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)