por Sherminator » Ter Nov 13, 2012 14:39
Boa tarde,
podiam-me ajudar a derivar 2 funções se faz favor?
A primeira é

qual é a sua derivada e como lá chegamos?
A segunda é

qual a sua derivada e como lá chegamos?
Agradeço a ajuda, um abraço!
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por e8group » Ter Nov 13, 2012 15:28
Perceba se

e

.Considerando

. Pela regra da cadeia , temos que

. Derivando em relação a x cada uma ,

e

.Ou seja ,

.
Tente fazer a outra , caso não conseguir post aqui .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Sherminator » Qua Nov 14, 2012 08:14
Obrigado pela ajuda, assim já consegui resolver a outra, deixo aqui a resolução a ver se está bem:

Podemos resolver pela formula

Assim:

Resultado:

Correto?
Cumprimentos

-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por e8group » Qua Nov 14, 2012 09:43
sim estar certo . O que você fez , foi isto :

. No caso u é uma função .Isso mesmo.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas] Mínimo de função
por vinisoares9 » Dom Jun 24, 2012 00:22
- 2 Respostas
- 1625 Exibições
- Última mensagem por vinisoares9

Dom Jun 24, 2012 02:58
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Função diferenciável
por fff » Sáb Set 27, 2014 18:31
- 0 Respostas
- 1041 Exibições
- Última mensagem por fff

Sáb Set 27, 2014 18:31
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Derivada da função
por neoreload » Sáb Nov 01, 2014 08:25
- 5 Respostas
- 3346 Exibições
- Última mensagem por young_jedi

Dom Nov 02, 2014 10:29
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]Domínio da função
por Laisa » Seg Mar 04, 2019 16:22
- 0 Respostas
- 4547 Exibições
- Última mensagem por Laisa

Seg Mar 04, 2019 16:22
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Esboço do gráfico de uma função
por Leon » Sáb Jun 07, 2014 22:28
- 0 Respostas
- 1007 Exibições
- Última mensagem por Leon

Sáb Jun 07, 2014 22:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.